Intermittent distribution of micro-instabilities in space plasma
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Weakly collisional space plasmas are rarely Initial conditions: i = fe etp X y 1 /e 0, 0V 0

in equilibrium and often exhibit microin-
stabilities driven by ion temperature an-
i1sotropy.

® In both cases, simulation as well data
Colorplot of various palasma parameters from a fully kinetic 2.5D PIC simulation. Fourth and fifth panels show the spatial from MMS, we find that the microin-

distribution of Ymax for parallel and oblique propagation respectively corresponding to first two panels. stabilities occur highly intermittently in

the plasma.
,Béﬁp Rp = TJ_p/T"p /7 Ion C%/clotron Firehose  Mirror Firehose
0
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® Simulation shows indications that the

== N SN ) ) instabilities preferentially occur near
5 3 VY |- current sheets.

@2 N , ® This suggests that, though microin-

In this study, we apply linear Vlasov theory D7\ . - stabilities affect the plasma globally,

to both simulations and in-situ observa-
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- ) e ) — . they act locally and develop in response
Jitﬁgiatc?c explore how these two phenomena 50{ VN &/ \UAEANNSE 4| to extreme temperature anisotropies
- 2 ) . AN Gl / generated by turbulent structure.
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By using Particle-In-Cell (PIC) simulations K S ala
and Magnetospheric MultiScale (MMS) OO 50 100
Mission observations in the terrestrial x(d:)
magnetosheath, we calculate and compare |
the proton-temperature-anisotropy driven jj @ ), and R ) values are intermittently distributed. ® Extreme values of growth rates occur in the regions close

linear-instability growth rates for every to current sheets, though not exactly on top of it.
available pointwise sample. ® Current sheets occur in the regions where anisotropy is

" high/low. ® Significantly lesser number of growth rate for oblique P =,

instabilities. Future Work

® Study the correlation between and]J ,

Results from MMS by using the propinquity method.
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NN i S . . ® The growth rates peak around the
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x(d;) x(d;) x(d;) sheets, though they do not overlap
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