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Introduction:
Microphysics of Space-Plasma Ions
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Introduction VDF

Velocity Distribution Function (VDF)

Probability distribution of particle velocities
(for a given species, j)

Relation of VDF moments to bulk parameters

In local thermal equilibrium (LTE),
all particle species have

. . . the same temperature.

. . . the same bulk velocity.

. . . Maxwellian VDF’s.

VDFs of space-plasma ions

Highly variable
Frequently exhibit departures from LTE

Preserved by low rates of collisions among ions
Reveal the plasma’s “history”

Bulk Parameters:

nj – particle density (0th moment)
vj – bulk velocity (1st moment)
wj – thermal speed

(2nd moment)
Tj – temperature

kB Tj = mj w
2
j / 2
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Introduction VDF

Exemplar VDF for Protons

2-D projection of 3-D VDF

Contours of phase-space density

Overlaid axis of magnetic-field

Multiple departures from LTE

Temperature anisotropy

Elongation/compression of contours
Alignment with magnetic field: T⊥j and T‖j
Anisotropy ratio: Rj = T⊥j /T‖j

Feldman et al. (JGR, 1973); IMP-6
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Introduction VDF

Exemplar VDF for Protons

Global and local processes affecting plasma

Expansion:
Large-scale trends in fluid moments

Shocks:
Discontinuities in fluid moments

Turbulence:
Spectra of fluctuations

Coulomb collisions:
Soft scattering of individual particles

Microinstabilities:
Limits on departures from LTE

Feldman et al. (JGR, 1973); IMP-6
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Overview

Overview

Questions:

How are the microinstabilities distributed in the space-plasma?

How do microinstabilities regulate temperature anisotropy in the magnetosheath?

Where and when does this regulation occur?

Are the linear time scales even important?

Outline:

Kinetic theory of temperature-anisotropy instabilities

Instabilities in PIC simulation: regulation of temperature anisotropy

Temperature anisotropy instabilities in Earth’s magnetosheath and solar wind

Interplay of turbulence and instabilities
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Microinstabilities

Kinetic Theory of
Temperature-Anisotropy Instabilities
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Microinstabilities Vlasov

Linear Vlasov Theory of Instabilities

VDF fj(t, r,u) for ion species j

t = time; r = position; u = velocity

Vlasov equation: collisionless Boltzmann equation

df
dt =

∂fj
∂t + u · ∂fj∂r +

qj
mj

(E + u× B) · ∂fj∂u = 0

Analysis of microinstabilities:

Assume homogeneous background
Impose small-amplitude perturbation ∝ e i(k·r−ω t)

k = wave vector
ω = frequency (complex)
ω = ωr + i γ

Expand Vlasov and Maxwell’s equations to first order
Solve for dispersion relation: ω as a function of k
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Microinstabilities Vlasov

Linear Vlasov Theory of Instabilities

Exemplar dispersion curves

Plot of ω = ωr + i γ as function of k
Proton cyclotron instability
Color: different values of Rp = T⊥p /T‖p

Growth rate of mode: γ = γ(k)

γ < 0: decreasing amplitude (damped wave)
γ > 0: increasing amplitude (instability)

Instability growth rate: γmax = max∀k γ

γmax = 0: plasma stable (all modes damped)
γmax > 0: plasma unstable (growing modes)
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Microinstabilities Ion Anisotropy

Ion Temperature-Anisotropy Instabilities

Parallel (k ‖ B) & Oblique (k ∦ B) &
Propagating (ωr > 0) Non-Prop. (ωr = 0)

T⊥j > T‖j Ion-cyclotron Mirror
(Rj > 1) (Alfven mode) (kinetic slow mode)
T⊥j < T‖j Parallel firehose Oblique firehose
(Rj < 1) (fast/whistler mode) (Alfven mode)

Instabilities driven by Rj 6= 1

Separate modes for Rj > 1 and < 1

Separate modes for k parallel and oblique to B

Value of γ strongly dependent on Rj and plasma beta:

β‖j ≡
nj kB T‖j
B2 / (2µ0)

Example: γmax(β‖p,Rp) for mirror instability
Maruca (PhD thesis, 2012)
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Microinstabilities Ion Anisotropy

Instability Regulation of Temperature Anisotropy

Joint distributions of (β‖j ,Rj)-data

Essentially, 2-D histograms
“Brazil plots”

Popularized by Hellinger et al. (GRL, 2006)

Proton measurements Wind/SWE
Data bins smoothed into curves
Overlaid: contours of constant γ (theory)
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Microinstabilities Ion Anisotropy

Instability Regulation of Temperature Anisotropy

Alignment of data with γ contours

Excellent for oblique modes (right)
Worse for parallel modes (left) – despite theoretically stricter limits (especially at low-β‖p)
Cause unknown; possibly due to differences in propagation
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Instability and heating

Instabilities and Heating

Probability density of (β‖p,Rp)

Counts normalized by bin size
Bins smoothed into contours

Temperature Tp over (β‖p,Rp)-plane

Temperature enhancement in marginally
unstable plasma
Heating (versus cooling) produces
temperature anisotropy that drives
instabilities

Temperature components T⊥p and T‖p
Enhancements in both at respective
instability thresholds
Strongly preferential heating
No indications of cooling driving
instabilities Maruca et al. (PRL, 2011)
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Instability and Structure

Instabilities and Magnetic Structures

Magnetic fluctuations
over (β‖p,Rp)-plane

Enhanced near
thresholds
Compressive near
mirror threshold

Magnetic PVI over
(β‖p,Rp)-plane

Indicator of magnetic
structure (turbulence)
Enhanced near
thresholds

Development of
microinstabilities in
turbulent plasma

mirrorAIC

Bale et al. (PRL, 2009) Osman et al. (PRL, 2012)
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Temperature Anisotropy Instabilities
in PIC simulation and Earth’s Magnetosheath
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Instabilities PIC

Instability Analysis of PIC Simulation

Qudsi et al. (ApJ, submitted)

2.5-D fully kinetic PIC simulation

Departures from LTE near current sheets
(Greco et al., PRL, 2008; PhRvE, 2012)

Linear Vlasov theory: growth rates of Rp 6= 1
instabilities

Distinct regions of γmax > 0

More with parallel than oblique instabilities
Near (not co-local with) current sheets

Turbulence generating anisotropic heating that
drives instabilities?
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Instabilities MMS

MMS/FPI Measurements in the Magnetosheath

MMS/FPI burst-mode measurements of protons

Burst-mode cadence: 150ms
58,510 data from 6 distinct intervals
Intervals previously studied by
Chasapis et al. (ApJ, 2017; ApJL, 2018)
Chosen for duration and turbulence activity
Four spacecraft used independently
For each interval, median(Rp) ≈ 1

Synchronization of proton and magnetic-field data

Binning of data over (β‖p,Rp)-plane
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β‖p ≡ 2µ0 np kB T‖p /B
2
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Maruca et al. (ApJ, 2018)
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Instabilities MMS

Comparison of MMS Data and Linear Vlasov Theory

Same data in both plots

Low-count bins suppressed

Normalization by bin size:
probability density

Contours of constant
growth rate γmax:
same code as Maruca et
al. (ApJ, 2012)

Very close alignment of
data distribution to
theoretical contours

Parallel Instabilities
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Instabilities MMS

Instability Analysis of Time Series

Multiple, longer periods of MMS data

Growth rates of all 4 ion temperature anisotropy
instabilities

Distinct periods of γmax > 0

Typical duration ≈ few seconds
Similar results for parallel and oblique instabilities
Some alternation between Rp < 1 and Rp > 1 periods

Frequency of γmax > 0 periods varies widely
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Simulation v Data Comparison

Simulated V Spacecraft Data

Simulated in-situ observations

Choose trajectory and speed through
simulation space
Generate time series of β‖p and Rp

values

Upper plot: instability growth rates
inferred for β‖p and Rp values

Lower plot: growth rates for exemplar
period of MMS data

Caveat: computational constraints limited
simulation to

. . . substantially lower β‖p than
magnetosheath.
. . . substantially weaker fluctuations
than magnetosheath.
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Are these instabilities important?
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Linear v non-linear

Majority of solar wind is unstable (∼54 %)

statistical assessment of solar wind
stability at 1 AU against ion sources of
free energy using Nyquist’s instability
criterion

Considered multiple sources of free energy

Less than 10% of the spectra have growth
rates faster than τnl

τnl is an estimate for the nonlinear
turbulent energy transfer time at the
proton gyroscale

Klein et al. (PRL,2018)

τnl = (k0ρp)−1/3ρp/VA
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Linear v non-linear γ v ω

PIC simulation: Comparison between γ and ω

τnl(r) = `/δb`

where δb` = |ˆ̀·[b(r + `)− b(r)]|

ωnl = 2π/τnl
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Linear v non-linear γ v ω

Observations: Comparison between γ and ω

MMS Wind

Badyopadhyay et al. (in prep)
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Linear v non-linear γ v ω

Observations: Comparison between γ and ω

Badyopadhyay et al. (in prep)
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Discussions and Conclusion

Discussion and Conclusions

Turbulence heats the plasma anisotropically giving rise to anisotropic distribution of instabilities in
space plasma
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Discussions and Conclusion

Questions?
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Discussions and Conclusion

Thank you!
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