A Statistical Comparison Between Proton Microinstabilities and Nonlinear Effects in Space Plasmas

Ramiz A. Qudsi¹,

Bennett A. Maruca^{1,2}, R. Bandyopadhyay¹, A. Chasapis¹, S. P. Gary³, R. Chhiber¹, T. N. Parashar¹, W. H. Matthaeus^{1,2}, J. L. Burch⁴,
T. E. Moore⁵, C. J. Pollock⁶, B. J. Giles⁵, W. R. Paterson⁵, J. Dorelli⁵, D. J. Gershman⁵, R. B. Torbert⁶, & R. J. Strangeway⁸

¹Univ. Delaware ²Bartol Res. Inst. ³Space Sci. Inst. ⁴Southwest Res. Inst. ⁵NASA/GSFC ⁶Denali Sci. ⁷Univ. New Hampshire ⁸Univ. California, LA

ahmadr@udel.edu

10 October 2019

Introduction: Microphysics of Space-Plasma Ions

Velocity Distribution Function (VDF)

- Probability distribution of particle velocities (for a given species, *j*)
- Relation of VDF moments to bulk parameters
- In local thermal equilibrium (LTE), all particle species have
 - . . . the same temperature.
 - . . . the same bulk velocity.
 - . . . Maxwellian VDF's.
- VDFs of space-plasma ions
 - Highly variable
 - Frequently exhibit departures from LTE
 - Preserved by low rates of collisions among ions
 - Reveal the plasma's "history"

Bulk Parameters:

$$n_j$$
 - particle density (0th moment)
 v_j - bulk velocity (1st moment)
 w_j - thermal speed
 T_j - temperature (2nd moment)

$$k_B T_j = m_j w_j^2 / 2$$

Exemplar VDF for Protons

- 2-D projection of 3-D VDF
- Contours of phase-space density
- Overlaid axis of magnetic-field
- Multiple departures from LTE
- Temperature anisotropy
 - Elongation/compression of contours
 - Alignment with magnetic field: $T_{\perp j}$ and $T_{\parallel j}$
 - Anisotropy ratio: $R_j = T_{\perp j} / T_{\parallel j}$

Feldman et al. (JGR, 1973); IMP-6

Exemplar VDF for Protons

- Global and local processes affecting plasma
 - Expansion:

Large-scale trends in fluid moments

Shocks:

Discontinuities in fluid moments

• <u>Turbulence</u>:

Spectra of fluctuations

• Coulomb collisions:

Soft scattering of individual particles

Microinstabilities:

Limits on departures from LTE

Feldman et al. (JGR, 1973); IMP-6

Overview

Overview

Questions:

- How are the microinstabilities distributed in the space-plasma?
- How do microinstabilities regulate temperature anisotropy in the magnetosheath?
- Where and when does this regulation occur?
- Are the linear time scales even important?

<u>Outline</u>:

- Kinetic theory of temperature-anisotropy instabilities
- Instabilities in PIC simulation: regulation of temperature anisotropy
- Temperature anisotropy instabilities in Earth's magnetosheath and solar wind
- Interplay of turbulence and instabilities

Kinetic Theory of Temperature-Anisotropy Instabilities

Vlasov

Linear Vlasov Theory of Instabilities

- VDF $f_j(t, \mathbf{r}, \mathbf{u})$ for ion species j
 - t = time; r = position; u = velocity
- Vlasov equation: collisionless Boltzmann equation

$$\frac{df}{dt} = \frac{\partial f_j}{\partial t} + \mathbf{u} \cdot \frac{\partial f_j}{\partial \mathbf{r}} + \frac{q_j}{m_j} \left(\mathbf{E} + \mathbf{u} \times \mathbf{B} \right) \cdot \frac{\partial f_j}{\partial \mathbf{u}} = 0$$

- Analysis of microinstabilities:
 - Assume homogeneous background
 - Impose small-amplitude perturbation $\propto e^{i({f k}\cdot{f r}-\omega\,t)}$
 - $\mathbf{k} =$ wave vector
 - $\omega = \text{frequency (complex)}$
 - $\omega = \omega_r + i \gamma$
 - Expand Vlasov and Maxwell's equations to first order
 - Solve for dispersion relation: ω as a function of ${\bf k}$

Vlasov

Linear Vlasov Theory of Instabilities

- Exemplar dispersion curves
 - Plot of $\omega = \omega_r + i \gamma$ as function of k
 - Proton cyclotron instability
 - Color: different values of $R_{
 ho}=\,T_{\perp
 ho}\,/\,T_{\parallel
 ho}$
- Growth rate of mode: $\gamma = \gamma(\mathbf{k})$
 - $\gamma <$ 0: decreasing amplitude (damped wave)
 - $\gamma >$ 0: increasing amplitude (instability)
- \bullet Instability growth rate: $\gamma_{\max} = \max_{\forall \mathbf{k}} \gamma$
 - $\gamma_{\max} =$ 0: plasma stable (all modes damped)
 - $\gamma_{\max} > 0$: plasma unstable (growing modes)

Ion Temperature-Anisotropy Instabilities

	Parallel ($\mathbf{k} \parallel \mathbf{B}$) &	Oblique (k ∦ B) &	
	Propagating ($\omega_{ m r} > 0$)	Non-Prop. ($\omega_{ m r}=$ 0)	
$T_{\perp j} > T_{\parallel j}$	lon-cyclotron	Mirror	
$(R_j > 1)^{-1}$	(Alfven mode)	(kinetic slow mode)	
$T_{\perp j} < T_{\parallel j}$	Parallel firehose	Oblique firehose	
$(R_j < 1)^{-1}$	(fast/whistler mode)	(Alfven mode)	

- Instabilities driven by $R_j \neq 1$
- Separate modes for $R_j > 1$ and < 1
- $\bullet\,$ Separate modes for k parallel and oblique to B
- Value of γ strongly dependent on R_j and plasma beta:

$$\beta_{\parallel j} \equiv \frac{n_j \, k_{\rm B} \, T_{\parallel j}}{B^2 \, / \left(2 \, \mu_0\right)}$$

• Example: $\gamma_{\max}(\beta_{\parallel p}, R_p)$ for mirror instability

Ion Anisotropy

Instability Regulation of Temperature Anisotropy

Ion Anisotropy

Instability Regulation of Temperature Anisotropy

• Alignment of data with γ contours

- Excellent for oblique modes (right)
- Worse for parallel modes (left) despite theoretically stricter limits (especially at low- $\beta_{\parallel p}$)
- Cause unknown; possibly due to differences in propagation

Instabilities and Heating

- Probability density of $(\beta_{\parallel p}, R_p)$
 - Counts normalized by bin size
 - Bins smoothed into contours
- Temperature T_p over $(\beta_{\parallel p}, R_p)$ -plane
 - Temperature enhancement in marginally unstable plasma
 - Heating (versus cooling) produces temperature anisotropy that drives instabilities
- Temperature components $T_{\perp p}$ and $T_{\parallel p}$
 - Enhancements in both at respective instability thresholds
 - Strongly preferential heating
 - No indications of cooling driving instabilities

Maruca et al. (PRL, 2011)

Instabilities and Heating

- Probability density of $(\beta_{\parallel p}, R_p)$
 - Counts normalized by bin size
 - Bins smoothed into contours
- Temperature T_p over $(\beta_{\parallel p}, R_p)$ -plane
 - Temperature enhancement in marginally unstable plasma
 - Heating (versus cooling) produces temperature anisotropy that drives instabilities
- Temperature components $T_{\perp p}$ and $T_{\parallel p}$
 - Enhancements in both at respective instability thresholds
 - Strongly preferential heating
 - No indications of cooling driving instabilities

Maruca et al. (PRL, 2011)

Instabilities and Magnetic Structures

- Magnetic fluctuations over (β_{||p}, R_p)-plane
 - Enhanced near thresholds
 - Compressive near mirror threshold
- Magnetic PVI over (β_{||}_p, R_p)-plane
 - Indicator of magnetic structure (turbulence)
 - Enhanced near thresholds
- Development of microinstabilities in turbulent plasma

Temperature Anisotropy Instabilities in PIC simulation and Earth's Magnetosheath

Instabilities PIC

Instability Analysis of PIC Simulation

- 2.5-D fully kinetic PIC simulation
- Departures from LTE near current sheets (Greco et al., *PRL*, 2008; *PhRvE*, 2012)
- Linear Vlasov theory: growth rates of $R_p \neq 1$ instabilities

- Distinct regions of $\gamma_{\max} > 0$
 - More with parallel than oblique instabilities
 - Near (not co-local with) current sheets
- Turbulence generating anisotropic heating that drives instabilities?

MMS/FPI Measurements in the Magnetosheath

• MMS/FPI burst-mode measurements of protons

- Burst-mode cadence: $150 \, \mathrm{ms}$
- 58,510 data from 6 distinct intervals
- Intervals previously studied by Chasapis et al. (*ApJ*, 2017; *ApJL*, 2018)
- Chosen for duration and turbulence activity
- Four spacecraft used independently
- For each interval, $\mathrm{median}(R_p) pprox 1$
- Synchronization of proton and magnetic-field data
- Binning of data over $(\beta_{\parallel p}, R_p)$ -plane

Maruca et al. (ApJ, 2018)

Comparison of MMS Data and Linear Vlasov Theory

- Same data in both plots
- Low-count bins suppressed
- Normalization by bin size: probability density
- Contours of constant growth rate γ_{max} : same code as Maruca et al. (*ApJ*, 2012)
- Very close alignment of data distribution to theoretical contours

Parallel Instabilities

Oblique Instabilities

Maruca et al. (ApJ, 2018)

Instability Analysis of Time Series

- Multiple, longer periods of MMS data
- Growth rates of all 4 ion temperature anisotropy instabilities
- Distinct periods of $\gamma_{\rm max}>0$
 - Typical duration \approx few seconds
 - Similar results for parallel and oblique instabilities
 - Some alternation between $R_p < 1$ and $R_p > 1$ periods
- Frequency of $\gamma_{\rm max}>$ 0 periods varies widely

Simulated V Spacecraft Data

- Simulated in-situ observations
 - Choose trajectory and speed through simulation space
 - Generate time series of $\beta_{\parallel p}$ and R_p values

Simulated V Spacecraft Data

- Simulated in-situ observations
 - Choose trajectory and speed through simulation space
 - Generate time series of $\beta_{\parallel p}$ and R_p values
- Upper plot: instability growth rates inferred for $\beta_{\parallel p}$ and R_p values
- Lower plot: growth rates for exemplar period of *MMS* data
- Caveat: computational constraints limited simulation to
 - . . . substantially lower $\beta_{\parallel p}$ than magnetosheath.
 - . . . substantially weaker fluctuations than magnetosheath.

Are these instabilities important?

Majority of solar wind is unstable (\sim 54 %)

- statistical assessment of solar wind stability at 1 AU against ion sources of free energy using Nyquist's instability criterion
- Considered multiple sources of free energy
- Less than 10% of the spectra have growth rates faster than $au_{
 m nl}$

	# Spectra	# Unstable	Mirror	CGL FH	Kinetic
Total	309	166	14	1	151
p, b, & α	189	130	12	0	118
p & α	114	33	2	1	30
р& b	5	3	0	0	3
р	1	0	0	0	0

Klein et al. (*PRL.2018*)

Majority of solar wind is unstable (\sim 54 %)

- statistical assessment of solar wind stability at 1 AU against ion sources of free energy using Nyquist's instability criterion
- Considered multiple sources of free energy
- Less than 10% of the spectra have growth rates faster than $au_{
 m nl}$
 - τ_{n1} is an estimate for the nonlinear turbulent energy transfer time at the proton gyroscale

	# Spectra	# Unstable	Mirror	CGL FH	Kinetic
Total	309	166	14	1	151
p, b, & α	189	130	12	0	118
p & α	114	33	2	1	30
р& b	5	3	0	0	3
р	1	0	0	0	0

Klein et al. (PRL.2018)

$$au_{
m nl} = (k_0
ho_p)^{-1/3}
ho_p / V_A$$

PIC simulation: Comparison between γ and ω

 $au_{
m nl}(r) = \ell/\delta b_\ell$

where
$$\delta b_\ell = | \hat{m\ell} \cdot [{m b} ({m r} + m\ell) - {m b} ({m r})] |$$

 $\omega_{
m nl}=2\pi/ au_{
m nl}$

γνω

PIC simulation: Comparison between γ and ω

 $\tau_{\rm nl}(\mathbf{r}) = \ell / \delta \mathbf{b}_{\ell}$

where $\delta b_{\ell} = |\hat{\ell} \cdot [\mathbf{b}(\mathbf{r} + \ell) - \mathbf{b}(\mathbf{r})]|$

 $\omega_{\rm nl} = 2\pi/\tau_{\rm nl}$

Badyopadhyay et al. (in prep)

Observations: Comparison between γ and ω

Badyopadhyay et al. (in prep)

Observations: Comparison between γ and ω

Badyopadhyay et al. (in prep)

• Turbulence heats the plasma anisotropically giving rise to anisotropic distribution of instabilities in space plasma

- Turbulence heats the plasma anisotropically giving rise to anisotropic distribution of instabilities in space plasma
- The linear instability thresholds acts on plasma and restrict its excursion to extreme values of R_p

- Turbulence heats the plasma anisotropically giving rise to anisotropic distribution of instabilities in space plasma
- The linear instability thresholds acts on plasma and restrict its excursion to extreme values of R_p
- in simulation as well as observational data the non-linear times are almost always faster than the linear time scales

- Turbulence heats the plasma anisotropically giving rise to anisotropic distribution of instabilities in space plasma
- The linear instability thresholds acts on plasma and restrict its excursion to extreme values of R_p
- in simulation as well as observational data the non-linear times are almost always faster than the linear time scales

Questions?

Thank you!