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Introduction:
Microphysics of Space-Plasma lons

ahmadr@udel.edu (U. Del.) UCL-MSSL 04 October 2019 3/26



Velocity Distribution Function (VDF)

@ Probability distribution of particle velocities
(for a given species, j)
@ Relation of VDF moments to bulk parameters
@ In local thermal equilibrium (LTE),
all particle species have

. . the same temperature.
. . the same bulk velocity.
. . . Maxwellian VDF's.

@ VDFs of space-plasma ions

e Highly variable
o Frequently exhibit departures from LTE

@ Preserved by low rates of collisions among ions
o Reveal the plasma’s “history”
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Bulk Parameters:

n; — particle density (0" moment)
v; — bulk velocity ~ (1°* moment)
w; — thermal speed

224 moment
T; — temperature ( )

kBTj:mJ-V|/j2/2

04 October 2019

4/26



Exemplar VDF for Protons

1536 UT on Aprll 12,1971
T T T

@ 2-D projection of 3-D VDF 150
@ Contours of phase-space density
@ Overlaid axis of magnetic-field
@ Multiple departures from LTE

@ Temperature anisotropy
e Elongation/compression of contours
o Alignment with magnetic field: T1; and T;
o Anisotropy ratio: Rj = T.;/ T|;
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Exemplar VDF for Protons

@ Global and local processes affecting plasma 150 '53.6 Ut on .Ap'” 2. |'97|
o Expansion:
Large-scale trends in fluid moments
o Shocks:
Discontinuities in fluid moments
e Turbulence:
Spectra of fluctuations
Coulomb collisions:
Soft scattering of individual particles
o Microinstabilities:
Limits on departures from LTE

°
Azimuthal Velocity ( km/sec)
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Feldman et al. (JGR, 1973); IMP-6
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Overview

Overview

Questions:
@ How are the microinstabilities distributed in the space-plasma?
@ How do microinstabilities regulate temperature anisotropy in the magnetosheath?
@ Where and when does this regulation occur?

@ Are the linear time scales even important?

Outline:
o Kinetic theory of temperature-anisotropy instabilities
@ Instabilities in PIC simulation: regulation of temperature anisotropy
@ Temperature anisotropy instabilities in Earth's magnetosheath and solar wind
o

Interplay of turbulence and instabilities
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Microinstabilities

Kinetic Theory of
Temperature-Anisotropy Instabilities
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Linear Vlasov Theory of Instabilities
o VDF fj(t,r,u) for ion species j

e t = time; r = position; u = velocity

@ Vlasov equation: collisionless Boltzmann equation

dt — Bt
@ Analysis of microinstabilities:

df _ Of of | g of,
G=atu G+ (E+tuxB) 5=0

e Assume homogeneous background
o Impose small-amplitude perturbation gilkr—wi)
@ k = wave vector
e w = frequency (complex)
o Ww=wr+1ivy
Expand Vlasov and Maxwell's equations to first order
e Solve for dispersion relation: w as a function of k
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Microinstabilities AESeV

Linear Vlasov Theory of Instabilities

@ Exemplar dispersion curves

o Plot of w = w, + i~y as function of k

e Proton cyclotron instability

o Color: different values of R, = T,/ T,
o Growth rate of mode: v = (k)

e 7 < 0: decreasing amplitude (damped wave)

e v > 0: increasing amplitude (instability)
@ Instability growth rate: Ymax = maxyk v

@ Ymax = 0: plasma stable (all modes damped)
@ Ymax > 0: plasma unstable (growing modes)
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Microinstabilities lon Anisotropy

lon Temperature-Anisotropy Instabilities

Parallel (k || B) &
Propagating (w, > 0)

Oblique (k }f B) &
Non-Prop. (w, = 0)

Ty > Ty | lon-cyclotron Mirror

(Ri>1) (Alfven mode) (kinetic slow mode)
T1; < Ty, | Parallel firehose Oblique firehose
(R <1) (fast/whistler mode) | (Alfven mode)

o Instabilities driven by R; # 1

@ Separate modes for R; > 1 and <1

@ Separate modes for k parallel and oblique to B
@ Value of v strongly dependent on R; and plasma beta:

nj kg Ty,

VT B/ (2p0)
o Example: Ymax(B)p; Rp) for mirror instability
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Instability Regulation of Temperature Anisotropy
: 104
‘ Mirror

10.0
lon
Cyclotron
108
=
~ 10
3
Parallel & Oblique
Firehose 102 Firehose
0.1 L L 1y I I I ! ’ L 101
0.01 0.10 1.00 10.00 0.01 0.10 1.00 10.00
Bip Bip
@ Popularized by Hellinger et al. (GRL, 2006)
o Proton measurements Wind /SWE

o Data bins smoothed into curves
10/26

e Joint distributions of (3;, R;)-data
o Overlaid: contours of constant 7y (theory)
04 October 2019

o Essentially, 2-D histograms

e "“Brazil plots”
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Instability Regulation of Temperature Anisotropy
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@ Alignment of data with « contours
o Excellent for oblique modes (right)
o Worse for parallel modes (left) — despite theoretically stricter limits (especially at low-£3,,)
e Cause unknown; possibly due to differences in propagation
UCL-MSSL
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Instabilities and Heating

o Probability density of (3, Rp)

o Counts normalized by bin size P(BipRy) = n/ (NAB,AR,) 7, [K]
e Bins smoothed into contours T T H:BE;:EE;S-
107 1078 10°® 107! 10

e Temperature T, over (3),, R,)-plane

o Temperature enhancement in marginally
unstable plasma

o Heating (versus cooling) produces
temperature anisotropy that drives
instabilities

@ Temperature components T, and T,

o Enhancements in both at respective
instability thresholds

I
0.1 1. 10. 0.1 1. 10.

o Strongly preferential heating Biy = 2 o 1y ki Ty / B° Bip = 2 pon, ks Ty / B

e No indications of cooling driving
. e Maruca et al. (PRL, 2011)
instabilities
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Instabilities and Heating

o Probability density of (3, Rp)

o Counts normalized by bin size 71, [K] Ty, [K]
; ; BN T [ [ T
e Bins smoothed into contours I P Ly R
e Temperature T, over (3),, R,)-plane 10.

o Temperature enhancement in marginally
unstable plasma

o Heating (versus cooling) produces
temperature anisotropy that drives
instabilities

@ Temperature components T, and T,
o Enhancements in both at respective

. . 0.1 ‘ ‘ :
instability thresholds o1 N L0. o1 N L0.

o Strongly preferential heating Bip = 2 oy ky Ty / B° Bip = 2 tomy ki Ty / B°

e No indications of cooling drivin
. de & & Maruca et al. (PRL, 2011)
instabilities
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Instability and Structure

Instabilities and Magnetic Structures

@ Magnetic fluctuations
over (B p, Rp)-plane
o Enhanced near 10g,,()
-01-02 -03 -04 -05 06 -0.7 -0.8
thresholds oo o —— | —
A|C mirror

o Compressive near
mirror threshold

@ Magnetic PVI over

(,8||p, Rp)—plane § 10
o Indicator of magnetic
structure (turbulence)
e Enhanced near -
threShOIdS o-(‘),om 0.010 0.100 1.000 10.000 |00,0000.01 10—1 100 10‘
o Development of . By
Bale et al. (PRL, 2009) Osman et al. (PRL, 2012)

microinstabilities in
turbulent plasma
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Temperature Anisotropy Instabilities
in PIC simulation and Earth’'s Magnetosheath
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Instability Analysis of PIC Simulation

B Ry =T, ,/T Jz lon-Cyclotron Firehose  Mirror Firehose
0.4° P01 107 = =2 1072 10 1072

0.4 1.2 0.25 1.0 2.0 -1 0 1 10-3 10
Vi~ ) e/ AN ) )
$ & \ ; N\ A -~ Ymax/Qp Ymax/Qp
—_ 100 ‘ @)= @AY
e % 4 - A\ ’7"
= = ) c:/” [ —
50 —.: N > f \ i .
ZNR /i A NG| /
0 AN A NN 3 4 “ AL\ (
50 100 150 50 10 150 50 100 150 50 100 150 50 100 150
x(d) x(d}) x(d}) x(d}) x(d})
Qudsi et al. (ApJ, submitted)
@ 2.5-D fully kinetic PIC simulation @ Distinct regions of Ymax > 0

o Departures from LTE near current sheets o More with parallel than oblique instabilities

(Greco et al., PRL, 2008; PhRVE, 2012) e Near (not co-local with) current sheets
@ Turbulence generating anisotropic heating that

@ Linear Vlasov theory: growth rates of R, # 1 EER >~
drives instabilities?

instabilities
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MMS /FPI Measurements in the Magnetosheath

n (Data per Bin)
‘ ‘ L |

o MMS/FPI burst-mode measurements of protons 10° 107 107
e Burst-mode cadence: 150 ms . ‘
e 58,510 data from 6 distinct intervals

Intervals previously studied by

Chasapis et al. (ApJ, 2017; ApJL, 2018)

o Chosen for duration and turbulence activity

o Four spacecraft used independently

e For each interval, median(R,) ~ 1

T/ Tjp,

lp =

@ Synchronization of proton and magnetic-field data <
@ Binning of data over ()5, Rp)-plane

102 10°
Bl = 2 pomy ki Ty, / B2
Maruca et al. (ApJ, 2018)
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Comparison of MMS Data and Linear Vlasov Theory

. Parallel Instabilities Oblique Instabilities
@ Same data in both plots 9
o Low-count bins suppressed ﬂp’m =n/ (VOB AR, DBy, Ry) =/ (N ABy, ARy)
. . . . 10~ 1073 1072 107! = - - -
o Normalization by bin size: 16 N PR,
(ST

i -4 J Ay N
ion-cyclotron R mirror |7/

probability density
o Contours of constant
growth rate Ymax:

1.4

-
same code as Maruca et = % o

&~ i0-20
al. (ApJ, 2012) Il 1§22

|
. < 10 e
o Very close alignment of = T|TENEEEEET 19715

data distribution to
theoretical contours

oblique-firehose |

parallel-firehose |

100 0 10 } 108 100 101 02 108
P ) .
Blp = 2pomy kp Ty, / B By = 2oy ks Ty, / B?

Maruca et al. (ApJ, 2018)
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Instability Analysis of Time Series

':i

v
o Multiple, longer periods of MMS data &
o Growth rates of all 4 ion temperature anisotropy

Bip
.

instabilities
@ Distinct periods of ymax > 0

o Typical duration ~ few seconds
e Similar results for parallel and oblique instabilities
e Some alternation between R, < 1 and R, > 1 periods

e

2

DI (nA/m?)
9

@ Frequency of vmax > 0 periods varies widely g ] ¢
S ¥
E @J - Yeyclotron
> Yfirehose
x“f
SR R
i \,0/3 Ymirror
> Yfirehose i i .
KAy 3 06:38

06:34
Time (UTC) on 2017 December, 26
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Simulated V Spacecraft Data

@ Simulated in-situ observations
o Choose trajectory and speed through
simulation space
o Generate time series of 3, and R,
values
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Simulated V Spacecraft Data

@ Simulated in-situ observations o 1 Simulation Yeyclotron
o Choose trajectory and speed through S ke Yfirehose
. . /7_
simulation space 519 3
o Generate time series of 3, and R, g
= A0 1
values =0
. ™ &
@ Upper plot: instability growth rates A0 ]
inferred for 3, and R, values
@ Lower plot: growth rates for exemplar 0 ] MMS Yeyelotron
period of MMS data 8 Vfirehose
. . e S
o Caveat: computational constraints limited 2 1% f {\v ‘~
simulation to £ o 1 | "J\ |
o ... substantially lower 3, than >~ Al
magnetosheath. 407 ]
e ... substantially weaker fluctuations | , , ,
0 10 20 30 40 50 60

than magnetosheath.
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Are these instabilities important?
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Linear v non-linear

Majority of solar wind is unstable (~54 %)

@ statistical assessment of solar wind
stability at 1 AU against ion sources of
free energy using Nyquist's instability
criterion

o Considered multiple sources of free energy

o Less than 10% of the spectra have growth
rates faster than 7y,

ahmadr@udel.edu (U. Del.)

# Spectra|# Unstable||Mirror | CGL FH|Kinetic

Total 309 166 14 1 151
p, b & 189 130 12 0 118

p & o 114 33 2 1 30

p&b 5 3 0 0 3

P 1 0 0 0
Klein et al. (PRL,2018)
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Majority of solar wind is unstable (~54 %)

@ statistical assessment of solar wind # Spectra|# Unstable||Mirror | CGL FH|Kinetic
stability at 1 AU against ion sources of Total 300 166 14 1 151
free energy using Nyquist's instability p, b, & a 189 130 12 0 118
criterion p & 114 33 2 1 30

o Considered multiple sources of free energy p&b 5 3 0 3

@ Less than 10% of the spectra have growth p ! 0 0 0

rates faster than 7y,
e Ty is an estimate for the nonlinear
turbulent energy transfer time at the
proton gyroscale 1 = (kopp) ™Y 3pp/ Va

Klein et al. (PRL,2018)

ahmadr@udel.edu (U. Del.) UCL-MSSL 04 October 2019 20/26



PIC simulation: Comparison between ~ and w

Tal(r) = £/5by
where §b; = |£-[b(r + £) — b(r)]|

Wl = 27/ T
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PIC simulation: Comparison between ~ and w

Tni(r) = £¢/0by

where §b; = |£-[b(r + £) — b(r)]|

Wl = 27/ T

1% Wi = 211/tn 1= 10, Y/wp 103
——— ] . : N EX T T
140F  — ) 3 E E E 3
E ] 107 f ] 3 102
120F / 3 £ 3 W25 L 3
E ~ - E ] E
100 E F/ 3 H20 F 1 &
E , ] 3 \J E
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T 80p . ] [ Y415 F 100
> C I / ] C ] - L
60 5 7 E 7 r 7]
E ] 3 b E 10-1
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Observations: Comparison between v and w

06330
2017-12-26 UTC

Badyopadhyay et al. (in prep)
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Observations: Comparison between v and w

PIC

&

|

—5 -4 -3 =2 -1 0
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Discussions and Conclusion

Discussion and Conclusions

@ Turbulence heats the plasma anisotropically giving rise to anisotropic distribution of instabilities in

space plasma

150

100

y(d))

50
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lon—CycIotron
10~

Firehose

Mirror
- 10

Firehose
107° 1072 1072 -3 1072
| TS | SS— | Sa— |
= ) —)
e Ymax/Qp Ymax/Qp
/ \/
/
150 50 100 150 50 100 150
x(d) x(d;)
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Discussions and Conclusion

Discussion and Conclusions

@ Turbulence heats the plasma anisotropically giving rise to anisotropic distribution of instabilities in

space plasma
@ The linear instability thresholds acts on plasma and restrict its excursion to extreme values of R,

Ry=T,,/T lon-Cyclotron Firehose  Mirror Firehose
0.4 0%" 12 025 PTTI o0 4 B 1 B TR 1o 10"
[ — | — | — ]
1507 ] S = o - r
(s VL) ; =/ S J
) Ly 3 /l\":\g\ vl‘ [\ / = : / \o. £ ~ Vmax/,Qp Vmax/Qp
’:100 A O 2 ==y (’;\)' / i /\J n .
E 91 £y /J — / V. ) \ \574’ ,T/ _
2 L= = -
0 '« ‘,‘,‘\.9 =~ - { ‘::,(_i , \ /)V (
0 50 100 150 50 150 50 100 150 50 100 150 50 100 150
x(dp) x(d; x(dj) x(dp) x(dp)
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Discussion and Conclusions

@ Turbulence heats the plasma anisotropically giving rise to anisotropic distribution of instabilities in
space plasma

@ The linear instability thresholds acts on plasma and restrict its excursion to extreme values of R,

@ in simulation as well as observational data the non-linear times are almost always faster than the
linear time scales

Y W =21/tpl1 =14, Y/iwn 103
——— ] —_—— B
140 - ) - E N F e
[ ] L E ] F ] 2
120 / E 02 E 3 ®25 E EN B
E ~ o] s ] b ]
100 B 3 E .1 B0 F 1 B
E , E 3 ] : ]
= E E s b ] E E
3 80 , . 1073 - S 15 1 100
= E _— y 3 b ] St ]
60 > E E i F E
E 3 b b b 1 [§101
a0F 7 = Lk 4410 E 3
E, E 10 f ] b ]
20 3 E 4 |Hos F e ERUS
0- I‘A 1 ] E Y | " ‘\/l " |: E 1 1 ]
0 50 100 1500 .0 50 100 150 0 50 100 1502103
X(d;) X(d)) X(d))
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Discussions and Conclusion

Discussion and Conclusions

@ Turbulence heats the plasma anisotropically giving rise to anisotropic distribution of instabilities in

space plasma

@ The linear instability thresholds acts on plasma and restrict its excursion to extreme values of R,
@ in simulation as well as observational data the non-linear times are almost always faster than the

linear time scales

Wind

PIC MMS
1 | 1 1 1 T T T 1 1 1 1
ot
c~Lr
e -2
|
-3l
-4l
f— 1 1 ‘ ’ 1 1 1 1
-5-4-3-2-1 0 1 -4 -3-2-1
Logipwn Loggwnl
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Discussions and Conclusion

Questions?
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Discussions and Conclusion

Thank you!
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