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https://slides.com/qudsi/magnetore
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Some relevant scales:

d (1AU) ∼i 100 km
V ∼sw 500 km/sec

X (boxsize) ∼sim 40di

∼ 4 × 10 km3

d ∼spc [1, 11] di

∼ [10 , 10 ] km2 3

f [min,max] ∼ V /(2 ×sw d )spc,max,min

∼ [0.25, 2.5] Hz
ν(sampling rate) ∼ 40Hz

(just because of box size and stuff)
time to move across the simulation box ∼ 10 sec1 .  3
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Gaussian Process
Regression Interpolation
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Gaussian Process Regression:

It is a probabilistic data imputation method

It is a probability distribution over possible functions that fit
the given finite dataset

dataset with finite number of observation is modelled as if it
were a multivariate normal distribution

m(x) = E[f(x)]
Mean function

k(x,x ) =′ E[(f(x) −m(x))(f(x ) −′ m(x ))]′
Covariance function

f(x) ∼ GP m(x), k(x,x )( ′ )
Gaussian Processes
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https://scikit-learn.org/stable/modules/gaussian_process.html
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Results
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One component at a time3 .  3



All components at a time3 .  4



Single
component

input

Vector input

3 .  5



3 .  6



simulation
data
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data
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8 spc

3 .  9



24 spc
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8 spc 24 spc
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8 spc 16 spc 24 spc

34 spc 24 spc* 22 spc*
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Moving Forward
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What's next?

Find ways to compare the reconstructed images for different
styles
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What's next?

Explore the impact of relative spacecraft separation and
arrangement

Incorporate the zero divergence condition on magnetic field

Explore alternative algorithms/methods

Deep Gaussian Processes
 
Neural Network as GP

Find ways to compare the reconstructed images for different
styles
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Thank You!
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