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Plasma
It is the fourth state of matter.
Consists of charged particles and is generally neutral.
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https://en.wikipedia.org/wiki/Magnetosphere

Interaction between Solar Wind and Earth's Magnetic Field

1) Bow shock.
 
2) Magnetosheath.
 
3) Magnetopause.
 
4) Magnetosphere.
 
5) Northern tail lobe.
 
6) Southern tail lobe.
 
7) Plasmasphere.
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Typical Values
0.2 au 1 au Magnetosheath

Magnetic Field     70 5 20
Ion-density     150 5 30
Ion-speed     400 450 250

Ion-temperature            1 3 2.5

(cm )−3

(nT)

(km/s)

(10 K)6
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Studying Plasma
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Temperature Anisotropy:
Ratio of perpendicular and parallel temperatures
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Temperature Anisotropy:
Ratio of perpendicular and parallel temperatures

R =j
T∥j

T⊥j

Beta:
Ratio of thermal and magnetic pressure

β ≡∥j
B / (2μ )2

0

n k Tj B ∥j
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Solar Wind, 1 au Magnetosheath
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(Qudsi, ApJ-2020)

2.5-D PIC simulation
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2.5-D PIC simulation

3-D PIC simulation
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(Qudsi, ApJ-2020)

MMS Observation
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(Qudsi, ApJ-2020)

Intermittency comparison between spacecraft observation and simulation
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Wind

MMS
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Measuring Intermittency
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Intermittency: Burstiness
Distribution is not uniform and has localized structures
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Measuring intermittency

I(t, τ) =
⟨∣ΔB(t,τ)∣ ⟩2 Δ

∣ΔB(t,τ)∣

ΔB(t, τ) = B(t+ τ) −B(t)

(Greco, GRL-2008)

τ : Time lag

PVI

4 .  3



Measuring intermittency

I(t, τ) =
⟨∣ΔB(t,τ)∣ ⟩2 Δ

∣ΔB(t,τ)∣

ΔB(t, τ) = B(t+ τ) −B(t)

(Greco, GRL-2008)

τ : Time lag

I > 2.4 ⟹Non-Gaussianity
(Osman, PRL-2012)

PVI

4 .  3



Measuring intermittency

I(t, τ) =
⟨∣ΔB(t,τ)∣ ⟩2 Δ

∣ΔB(t,τ)∣

ΔB(t, τ) = B(t+ τ) −B(t)

(Greco, GRL-2008)

τ : Time lag

ℓ = v ⋅ τ

I > 2.4 ⟹Non-Gaussianity

Lag in distance
(Osman, PRL-2012)

PVI

(Assuming Taylor hypothesis)

4 .  3



Measuring intermittency

I(t, τ) =
⟨∣ΔB(t,τ)∣ ⟩2 Δ

∣ΔB(t,τ)∣

ΔB(t, τ) = B(t+ τ) −B(t)

(Greco, GRL-2008)

τ : Time lag

ℓ = v ⋅ τ

I > 2.4 ⟹Non-Gaussianity

Lag in distance
(Osman, PRL-2012)

What value of    and     one should choose?τ Δ

PVI

(Assuming Taylor hypothesis)

4 .  3



Measuring intermittency

I(t, τ) =
⟨∣ΔB(t,τ)∣ ⟩2 Δ

∣ΔB(t,τ)∣

ΔB(t, τ) = B(t+ τ) −B(t)

(Greco, GRL-2008)

τ : Time lag

ℓ = v ⋅ τ

I > 2.4 ⟹Non-Gaussianity

Lag in distance
(Osman, PRL-2012)

τ ≪ τcorrelation

Δ ≫ τcorrelation

What value of    and     one should choose?τ Δ

PVI

(Assuming Taylor hypothesis)

4 .  3



4 .  4



PSP : Encounter 1 (second half)

(Qudsi, ApJS-2020)4 .  5



(δt, θ , θ ) =T p 1 2 ⟨T (t +p I δt)∣θ ≤1 I(t ) <I θ ⟩2

Conditional Temperature
Averages
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Non-linear Processes
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Non-linear time scale (ω )nl
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Comparison between      andω Γnl max

(Qudsi2021a, in prep)5 .  3



Comparison between      andω Γnl max

MMS

Wind

(Bandyopadhyay, PRL-2021,  
under review)
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Comparison between      andω Γnl max

(Qudsi2021a, in prep)

Solar Wind, 1 au
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(Maruca, ApJ-2018)

Solar Wind, 1 au Magnetosheath
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For any given system how do we figure out which one is
most relevant?
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For any given system how do we figure out which one is
most relevant?

A lot better understanding of turbulence cascade in
plasmas

Complete 3D structure of interplanetary magnetic field
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Magnetic Field Reconstruction

6 .  1



Gaussian Process Regression
It is a probabilistic data imputation method
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Gaussian Process Regression
It is a probabilistic data imputation method

m(x) = E[f(x)]

Mean function

k(x,x ) =′ E[(f(x) −m(x))(f(x ) −′ m(x ))]′

Covariance function

f(x) ∼ GP m(x), k(x,x )( ′ )

Gaussian Processes
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https://scikit-learn.org/stable/modules/gaussian_process.html
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Reconstructed Magnetic Field

(Maruca, Frontiers-2021)
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Reconstructed Magnetic Field
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for all the cases.
Linear instabilities as well as the heating rates in plasmas are amplified by
the presence of intermittency.
For all cases studied, non-linear processes are faster than the linear time
scale, though in phase space their distribution is a little more complicated.
Though we showed an interplay between the two processes, a better
understanding of type of turbulence/cascade is essential to conclusively
predict denouement of the competition between the two.
Knowledge of full 3D structure of interplanetary magnetic field will help with
this.
We showed that we need at least 24 spacecraft to reconstruct magnetic
field with sufficient accuracy.
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Questions?

https://slides.com/qudsi/thesis/
https://xkcd.com/1403/
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