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In this talk

e Plasma and why it is important to study.
o Different kinds of plasmas
 How we study them
e |nstabilities in a plasma
e Intermittency in plasmas
= Origin
= Measuring it
= Consequence
e Interplay between linear and nonlinear process

o Magnetic field topology reconstruction
e Conclusion
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Interaction between Solar Wind and Earth's Magnetic Field

1) Bow shock.

2) Magnetosheath.
3) Magnetopause.
4) Magnetosphere.
5) Northern tail lobe.
6) Southern tail lobe.

7) Plasmasphere.

https://en.wikipedia.org/wiki/Magnetosptteré
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Studying Plasma



Equation of Motion P Pz

odt T Tt de?



Equation of Motion

Maxwell's Equation

dP d’z
g Mg
VoE:ﬂ
— €0
V-B=0
o __ _ 0B
\VAS — o




Equation of Motion

Maxwell's Equation

dP d’z
g Mg
VoE:ﬁ
— €0
Vi:B =20
o __ _ 0B
\VAS — o




Equation of Motion

_dP &z
dt dt?
Maxwell's Equation V.E — %
V-B=0
. _ 0B
VXE=—% )
R _ ,, 7. 10E
V><'B_'U’OJICz@t

Vlasov Equation

fjis the distribution function of plasma for species |




Equation of Motion

_dP &z
dt dt?
Maxwell's Equation V.E — %
V-B=0
. _ 0B
VXE=—% )
R _ ,, 7. 10E
V><'B_'U’OJICz@t

Vlasov Equation

fis the distribution function of plasma for species |




Equation of Motion B 2
g T Mg
Maxwell's Equation o P
V-E=Z
V-B=0

V x E = — o

Vlasov Equation
WA Vefi+ & (BE+0x B)-Vif; =0

fjis the distribution function of plasma for species |

Dispersion Relation
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Vlasov Equation Linearization
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Vlasov Equation Linearization

fi(Z,9,t) = f5(Z,9) + f;(Z,9,1)
= f9(&,9) + fi(k,w, V) eFeeb
Linear Dispersion Equation
e ——
. fi(k,w, v) e'te et et
Wy + 7Y
real instability growth rate (v > 0)

“Ymax —— Maximum value of growth rate of a
given mode for all k and directions
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Temperature Anisotropy:
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Beta:
Ratio of thermal and magnetic pressure
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Solar Wind, 1 au
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Intermittency comparison between spacecraft observation and simulation
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Measuring Intermittency
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Data for 6" November, 2018
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Non-linear Processes
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Non-linear time scale (w,;)

We estimate it from the spectral amplitude near the ion-inertial scale
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Comparison between wy andI'nax

Solar Wind, 1 au
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Magnetosheath

Solar Wind, 1 au
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Magnetic Field Reconstruction



Gaussian Process Regression
It is a probabilistic data imputation method
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Gaussian Process Regression
It is a probabilistic data imputation method

Mean function

Covariance function

Gaussian Processes

f(x) ~ GP (m(x), k(x,x'))
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Reconstructed I\/Ia netic Field
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Conclusion:

Linear instabilities are distributed intermittently as are coherent structures
for all the cases.

Linear instabilities as well as the heating rates in plasmas are amplified by
the presence of intermittency.

For all cases studied, non-linear processes are faster than the linear time
scale, though in phase space their distribution is a little more complicated.
Though we showed an interplay between the two processes, a better
understanding of type of turbulence/cascade is essential to conclusively
predict denouement of the competition between the two.

Knowledge of full 3D structure of interplanetary magnetic field will help with
this.

We showed that we need at least 24 spacecraft to reconstruct magnetic
field with sufficient accuracy.
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