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ABSTRACT

Space plasmas in the inner heliosphere exist in a weakly collisional and turbulent

state. Though energy transfer from large scales to smaller scales by turbulent cascade is

widely accepted as an important feature of space plasmas, details of its exact dissipation

process are lacking. Features arising because of turbulence, such as intermittency

and temperature anisotropy, play important roles in the dynamics of space plasmas.

Microkinetic linear instabilities induced by temperature anisotropy have been shown

to change the statistical characteristics of plasma in a significant way.

Since the two processes, turbulence cascade and microkinetic instabilities, occur

in the same physical and phase space, there is an interplay at work. In this study we

investigated this interplay and the subsequent competition arising between the two,

linear and nonlinear, processes. We found an explicit connection between intermit-

tency and linear instability growth rates. We also showed localization of temperature

enhancement regions along the intermittent structures, which in turn can trigger linear

instabilities. Investigation of the two processes shed light on why linear theory works

as well as it does, and shows the complicated nature of their interplay.

Information related to the exact spatial structure of the interplanetary magnetic

field is vital to our understanding of the type of turbulence active in the space plasmas

and the mechanism of turbulence cascade. This will help us discern the interplay

between the two processes. We thus also report on a proof of concept study of magnetic

field topology reconstruction using Gaussian Processes in machine learning.

i
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Chapter 1

INTRODUCTION

1.1 Prologue to Plasma

Our daily life is dominated by our interactions with the three classical states

of matter: solid, liquid and gas. Plasma is the fourth state of matter and by far the

most abundant one. In fact the observable universe is almost entirely made up of

plasma (99.9% of the universe) (Boulos et al., 1994). From the HII region around a

huge star to the surface of a star, from the super hot Inter Galactic Medium to the

inside of a plasma TV, plasma is everywhere. Given its abundance and ubiquitous

nature, it becomes vitally important to study and understand plasma. In the rest of

this chapter we define what constitutes a plasma (Section 1.2) and discuss some of its

salient properties and the laws of physics that govern it. We also shed some light on

the local regions around Earth that are made up of plasma (Section 1.3) and discuss

studying them (Section 1.4). We conclude the chapter with with a brief discussion of

topics covered in this thesis. (Section 1.5).

1.2 Introduction To Plasma

The term “plasma” comes from the ancient Greek word “πλάσµα” that means

something that is moldable. It was first used in the modern context by Langmuir

(1928) to describe the “region (around electrodes) containing balanced charges of ion

and electrons”.

A plasma is a sub-type of ionized gas; a gas where significant fraction of the

atoms have been ionized. There are specific criteria that distinguishes plasmas from

other ionized gases (discussed later in this section), but first we consider the equations

that govern the dynamics of charged particles (electrons and ions).



1-2

As is with everything that has mass in the universe, a plasma’s dynamics is

governed by Newton’s equation of motion:

Fnet =
dP

dt
= m

d2x

dt2
1 (1.1)

where Fnet is the net external force acting on the system and P is its momentum. t is

time, x is the position vector and d
dt

is the derivative with respect to time.

For a charged particle with charge q, moving with velocity v in an electromag-

netic field with electric and magnetic field as E and B respectively, the electromagnetic

force or Lorentz force is given as:

FEM = q (E + v ×B) (1.2)

These equations (Equations (1.1) to (1.2)) coupled with the four Maxwell’s equations

(Equations (1.3) to (1.6)) define the complete dynamics of a plasma.

∇ · E =
ρ

ε◦
(1.3)

∇ ·B = 0 (1.4)

∇× E = −∂B

∂t
(1.5)

∇×B = µ◦J +
1

c2

∂E

∂t
(1.6)

where, ρ is the charge density, ε◦ is the permittivity of free space, ∂
∂t

is the partial

derivative with respect to time, J is the current density, and c is the speed of light in

vacuum.

The most accurate way to study the behaviour of plasma is to track each par-

ticle individually using Equations (1.1) to (1.6), all while accounting for all the fields,

external as well as those arising because of the charge and motion of particles them-

selves. However, that method is almost impossible to implement not only because of

difficulty in computing the field arising because of mutual interactions but also because

1 Fnet = md2x
dt2

is only valid when the particle is moving at speed much smaller than
the speed of light.
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of the huge number of particles involved. Consequently, scientists often fall back to

statistical methods in their studies, such as applying kinetic equations that use physics

based on ensemble averages (see Chapter 2) or by approximating the plasma as a fluid

as is done in Magneto-hydrodynamics (MHD).

Since even the lightest ion, a proton, is nearly 2000 times more massive than

an electron and the dynamics of particles are often governed by their masses, both the

time and length scales at which dynamics occur in plasmas are extremely diverse, even

when one is studying the same phenomena for ions and electrons. Values of some of the

parameters associated with plasma (generally referred to as plasma parameters) can

help in understanding the scales one is dealing with. Also, as will become apparent in

Chapters 2 and 3, one may choose to focus on a specific scale depending on the interest

or scope of the study. Here, we list some of the most relevant plasma parameters, what

each one of them mean, and their mathematical expressions.

Debye Length (λD): The Debye length is the scale above which a plasma (with

no net charge) maintains near charge neutrality — ρ ≈ 0 when ρ is smoothed over a

scale & λD. On scales smaller than λD, particles behave as if it were interacting with

other moving charges individually instead of a smooth macroscopic electromagnetic

field. If we have sufficiently large number of particles inside a spherical volume with

λD as the radius (npλ
3
D > 1), then particles are shielded by its neighbours from the sur-

rounding plasma (called Debye shielding). On scales . λD, random thermal motions

of the particles give rise to isolated regions of non-zero charge density. We would then

expect λD to increase with plasma temperature. Indeed, for a plasma consisting of

ionized hydrogen for which the protons and electrons have comparable temperatures,

we define Debye length as:

λD =
ε◦kBTp

nee2

1/2

(1.7)

where kB is the Boltzmann constant, ne is the electron number density and Tp is the

proton temperature. In order for a system to be classified as plasma, we must have the
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physical length scale (L) of the system much larger than its Debye length.

λD � L (1.8)

Ion-inertial Length (dj): This is the length scale in plasma at which the electrons

are decoupled from ions and the magnetic field is frozen in with the electrons. For

species ‘j’ of plasma (where j = p+ for protons and j = in+ for any other ion with n

positive charge)2, it can be written in terms of ion plasma frequency (ωpj) as:

dj =
c

ωpj

(1.9)

Plasma Frequency (ωpj)
3: It is the frequency at which any given species in plasma

oscillates and is given by:

ωpj =

(
njq

2
j

ε◦mj

) 1
2

(1.10)

Cyclotron Frequency (Ωcj): In a magnetized plasma (a plasma which has a back-

ground magnetic field), due to the perpendicular direction of the magnetic force with

respect to the particle’s velocity, any non-stationary charged particle in a magnetic

field gyrates around a point called the center of gyration. The frequency of gyration

or cyclotron frequency is given by:

Ωcj =
qjB

mj

(1.11)

where B is the background magnetic field.

Gyroradius (ρj): This is the radius of the circular path that a particle takes in

2 In this thesis unless otherwise specified ion will refer to protons and two terms will
be used interchangeably

3 Note that ‘p’ in ωpj refers to plasma and not proton.
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the presence of a magnetic field, and is dependent on the ratio of thermal speed to that

of cyclotron frequency.

ρj =
wj

Ωcj

(1.12)

where wj is the thermal speed of the particle.

Alfvén Speed (VAj): It is the speed at which magnetic signals, like a fluctuation

in the field, travel in a plasma. It depends on the strength of the magnetic field in the

plasma as well the density and mass of the species and has the following expression:

vAj =
B√

µ◦
∑

j njmj

(1.13)

1.3 Plasma in Near-Earth Environment

The Sun is the largest source of plasma in our solar system. Huge amounts

of charged particles emanate from the Sun originating in its outermost atmospheric

layer, called the Corona (Parker, 1958, 1960, 1963; Gringauz et al., 1960; Neugebauer

& Snyder, 1962). This constant outflow of particles is commonly called solar wind.

The solar wind is often highly magnetized, is weakly collisional, travels at supersonic

speed and is primarily composed of ionized hydrogen (i.e., protons) (Marsch et al.,

1982a). Table 1.1 lists out some of the plasma parameters and their typical values for

the solar wind at 1 au. Figure 1.1 shows the distribution of some of the parameters

listed in Table 1.1.

The Earth’s local magnetic field, which arises as a result of dynamo action of

its molten core (Elsasser, 1956), extends far into space (roughly 10 earth radii in the

direction of the sun and ∼ 300 earth radii in the anti-sunward direction) and interacts

with the incoming solar wind. This interaction gives rise to a plethora of structures.

Figure 1.2 shows an artistic rendition of Earth’s magnetosphere. The layer along

4 Figure 1.1 is based on data from Wind Spacecraft. See Section 4.1.1 for more details
on data and spacecraft.
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Figure 1.1: Distribution of various plasma parameters near Earth, based on data from Wind
spacecraft. Top row shows distribution for (from left to right) proton-inertial length (di),
Debye length (λD), proton-gyrofrequency (Ωcp) and the lower row shows (from left to right)
proton-gyroradius (ρi), proton-plasma frequency (ωpp) and alfvén speed (vA). Red line shows
the median value of each parameter, whereas the shaded region shows 10th to 90th (cyan)
and 25th to 75th percentile (magenta) of each parameter.4
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which solar wind transitions from supersonic to subsonic speed is called the bow shock

(region 1). The region immediately after the bow shock is called the magnetosheath

(region 2) and is comprised mostly of shock treated solar wind. This region is of

special importance to the present work (see Chapters 5 and 7). The region beyond

the magnetosheath, towards Earth, where the pressure exerted by the solar wind and

Earth’s magnetic field are in equilibrium is called the magnetopause (region 3) and

forms the boundary between Earth’s magnetosphere (volume around Earth where the

influence of its magnetic field is felt (region 4)) and the solar wind. There is also a

long magnetotail further away from the Sun, which extends far beyond the surface of

the Earth (regions 5 and 6). The region closest to the surface (region 7) is called the

plasmasphere, which is made up of relatively cooler plasma and is located above the

ionosphere. The shape and size of all these structures vary greatly depending on the

velocity and density of the incoming plasma, the strength of magnetic field, and solar

activity.

1.4 Studying Space Plasmas

In the previous section (Section 1.3) we discussed two different kinds of naturally

occurring plasma regions close to Earth. A complete theory of plasma would require

us to understand the commonality as well as the uniqueness of each of these regions.

Consequently, over the last century or so the scientific community has devised several

methods to study them. From Guglielmo Marconi using an antenna on a kite to receive

radio signals in 1901 to NASA launching a spacecraft costing more than a billion dollars

(Parker Solar Probe (PSP)) in 2018 to study the Sun from a closer distance than ever

before, the community has been in a constant pursuit to understand them.

5 These values are based on datasets as described in Chapter 4.

6 Picture credit: https://commons.wikimedia.org/wiki/File:Magnetosphere Levels.svg
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Figure 1.2: Artistic rendition of Earth’s magnetosphere, its structure and different layers.
The name of each numbered layer is 1.bow shock, 2. magnetosheath, 3. magnetopause, 4.
magnetosphere, 5 and 6. tail lobes, 7. plasmasphere.6
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Table 1.1: Plasma parameters and their typical values for different space plasmas.5

Parameter Solar Wind (0.15 au ) Solar Wind (1 au ) Magnetosheath

di 15,510 ± 6,200 m 91,920 ± 42,000 m 45,600 ± 9,900 m

λD 2.87 ± 1.98 m 6.41 ± 6.20 m 23.18 ± 8.00 m

Ωcp 6.47 ± 2.70 1/s 0.45 ± 0.26 1/s 2.16 ± 1.00 1/s

ωpp 19,328 ± 7,300 1/s 3,261 ± 1,500 1/s 6,574 ± 1,500 1/s

ρp 12,793 ± 8,500 m 68,615 ± 48,000 m 97,795 ± 69,000 m

VA 102,503 ± 39,000 m/s 43,390 ± 26,000 m/s 94,256 ± 50,000 m/s

1.5 In This Thesis

Work done towards this thesis presents an incremental contribution towards un-

derstanding the nature and behaviour of space plasmas. Chapters 2 and 3 provide a

theoretical background on plasma microkinetics and turbulence, respectively. Chap-

ter 4 gives a brief overview of all the datasets used in the present document and explains

some of the data analysis techniques employed in Chapters 5 to 7.

Chapters 5 to 8 report the author’s original work. Chapter 5 discusses the

intermittency in space plasmas and simulations as well as its co-development with linear

instabilities. Chapter 6 explores the heating of ions close to the Sun as a consequence

of intermittent structures. Chapter 7 discusses the competition between linear and

non-linear processes using a statistical approach on six different datasets. Chapter 8

presents an exploratory study of magnetic field reconstruction using machine learning
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(ML) techniques. Chapter 9 provides a summary of the entire thesis and a guide for

future work.
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Chapter 2

KINETIC THEORY AND LINEAR MICROKINETIC INSTABILITIES

Kinetic theory forms a significant part of our understanding of plasma, specially

at small scales (less than a di). In this chapter, we give a brief overview of the salient

properties of this theory. In Section 2.1 we start with the equation of motion for a

charged particle in an electromagnetic field and extend this idea to an ensemble of

particles. In Section 2.2 we discuss anisotropy and linear instabilities arising because

of it. We also discuss how one can compute rate of growth of these instabilities using

kinetic theory. In Section 2.3 we discuss some of the application and observational

evidence of linear theory. We finish this chapter with a brief discussion of limitations

of linear theory in Section 2.4.

2.1 Introduction to Plasma Kinetic Theory

2.1.1 Equations of motion

Consider a system which consists of a single charged particle of mass m and

charge q in a magnetic field B and an electric field E. The non-relativistic equation of

motion for this particle can then be written as:

m
dv1

dt
= q (E + v1 ×B) (2.1)

and the its exact phase space density at any point in space can be written as :

F1(x,v, t) = δ (x− x1(t)) δ (v − v1(t)) (2.2)

where x1(t) and v1(t) are the position and velocity of the particle at any time t and

δ(...) is the Dirac delta function. The six dimensional space spanned by x and v is
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called phase space1. If we have n such particles in the system, then for the ith particle,

Equation (2.1) can be written as :

mi
dvi

dt
= qi (Eµ + vi ×Bµ) (2.3)

where the subscript µ represents the superposition of all the fields exerted by the

particles in the system at the position of ith particle. The total phase space density

can now be written as:

Fn(x,v, t) =
n∑

i=1

δ (x− xi(t)) δ (v − vi(t)) (2.4)

In a closed system where there is no addition or removal of any particle, the total phase

space density of a fluid element in phase space will remain constant in time. Using this

conservation of phase space density one can write:

d

dt
(Fn(x,v, t)) = 0 (2.5)

Since both x and v depend on time, we can use the chain rule and write Equation (2.5)

as:

∂Fn

∂t
+
dx

dt
· dFn

dx
+
dv

dt
· dFn

dv
= 0 (2.6)

where ∂
∂t

is the partial derivative with respect to t. In Equation (2.6) we have dropped

(x,v, t) for the sake of readability. Using the fact that d
dt

x = v and substituting for dv
dt

from Equation (2.3) in Equation (2.6), we have:

∂F
∂t

+ v · ∇xF +
q

m
(Eµ + v ×Bµ) · ∇vF = 0 (2.7)

Solving Equation (2.7) (called the Klimontovich-Dupree equation) is quite a difficult

task since it contains all the microscopic fields, the computation of which involves

tracking the position and velocity of all the particles, which as we have already discussed

1 Note: x and v are independent coordinates in phase space.
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is quite impossible to implement. This problem can be mitigated by writing the phase

density as a sum of two parts, average and fluctuating as below:

F = 〈F〉+ δF

= f + δF
(2.8)

where 〈F〉 denotes the smoothed average or the background value of F , and δF is the

fluctuation in the smoothed F . For ease of writing, from now on 〈F〉 will simply be

denoted by f , which is also called the distribution function and is interpreted as the

probability of finding a particle at any location within a phase space volume dxdv. If

we carry out the same process for the fields, we can write them as:

Eµ = 〈Eµ〉+ δEµ

= E + δEµ

Bµ = 〈Bµ〉+ δBµ

= B + δBµ

(2.9)

Since F , B and E are all smoothed averages, their fluctuations (δF , δB, δE) will form

an statistical ensemble which would imply that 〈δ...〉 = 0.

Using Equations (2.8) and (2.9) in Equation (2.7) and then taking the ensemble

average, we have:

∂f

∂t
+ v · ∇xf +

q

m
(E + v ×B) · ∇vf =

q

m
〈(δE + v × δB) · ∇vF〉 (2.10)

This is the kinetic equation and defines the evolution of phase space density with time

and position.

Computing the right hand side of Equation (2.10) is quite a difficult task, thus

we often assume that the correlation between the background field and its fluctuation

is infinitely small and collisions between particles account for correlation among them-

selves and occur uncorrelated of each other as random events, a consequence of the

molecular chaos hypothesis (or stoßzahlansatz ) (Clerk Maxwell, 1867). Under these

assumptions we can simply replace the right side of Equation (2.10) with a collision

operator,
(
∂f
∂t

)
c
, which ideally will have all the information related to particle-particle

interaction. Equation (2.10) can thus be re-written as:

∂f

∂t
+ v · ∇xf +

q

m
(E + v ×B) · ∇vf =

(
∂f

∂t

)

c

(2.11)

https://en.wikipedia.org/wiki/Boltzmann_equation#The_collision_term_(Stosszahlansatz)_and_molecular_chaos
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This is the well known Boltzmann equation from statistical mechanics. Baumjohann

& Treumann (1996) and references therein give some details about different functional

forms of collisional operators.

Presence of collision can significantly alter the shape of a VDF (see Section 2.1.2

for definition). Since collisions can often result in transfer or exchange of energy and

momentum between particles they work to erode the non-equilibrium features of a VDF

(more on this later). In a fully ionized plasma where collisions are primarily coulombic

in nature, computing the collision operator is further complicated by its dependence on

temperature and density (Baumjohann & Treumann, 1996). Landau (1936) computed

the collision operator,
(
∂f
∂t

)
c
, for such a plasma, though solving it even for the simplest of

cases is quite a daunting ask (Verscharen et al., 2019). However, Marsch et al. (1982a);

Marsch (2010) showed that for space plasmas in the inner heliosphere collisions play

negligible to minor role. We thus simply set the value of collision operator to zero and

the Boltzmann equation (Equation (2.11)), in the absence of collision reduces to the

Vlasov equation:

∂f

∂t
+ v · ∇xf +

q

m
(E + v ×B) · ∇vf = 0 (2.12)

This equation forms the basis of much of kinetic theory for space plasmas and is used

extensively in this thesis. We also use the Vlasov equation to derive the dispersion rela-

tion (see Section 2.2.1), which gives us an idea about the kind of waves and instabilities

present in the system (more on this later).

2.1.2 Distribution Function and Other Definitions

As discussed in Section 2.1.1, f(x,v, t) gives the probability density function

(PDF) of particles in phase space. Different statistical moments of the PDF gives us

macroscopic properties of the whole ensemble. Often, we are interested in the behaviour

of the system at one particular position in the configuration space at any given time.

This would mean that the PDF will have no dependence on the position (x) or any

explicit dependence on time (t). We thus have a PDF with explicit dependence on just

the velocity given as f(v). This is referred to as velocity distribution function (VDF).
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For a VDF we can define some parameters associated with plasma using its

statistical moments.

Density (nj): Number density of species j, usually expressed in the units of cm−3 and

can be derived from VDF by computing its zeroth order moment as follows:

nj =

∫

∀v
d3vfj (v) (2.13)

Bulk velocity (vj): The bulk velocity of the species j, or the mean particle velocity,

usually has units of km/sec and can be derived from the VDF’s first-order moment:

vj =
1

nj

∫

∀v
d3vvfj (v) (2.14)

Thermal Speed (wj): It represents the thermal speed of the species j and has units

of km/sec. It is a measure of thermal energy of species j and the value for it can be

derived from the VDF’s second-order moment:

v2
j + 3w2

j =
1

nj

∫

∀v
d3vv2fj (v) (2.15)

For an anisotropic case, where temperature is different along different directions, Equa-

tion (2.15) is computed for each component separately (see Verscharen et al. (2019,

§1.4.1) for a detailed description).

Temperature (Tj): Using the thermal speed, one can define the temperature (in

units of K) of the species as:

Tj =
mj w

2
j

2kB

(2.16)

In a magnetized plasma, the VDFs commonly exhibit distinct temperatures perpendic-

ular and parallel to the magnetic field because of the slightly different heating or cooling

rates in different directions (Stix, 1992; Gary, 1993). We thus have different tempera-

tures in parallel (T‖j) and perpendicular (T⊥j) directions and the total temperature of

species j is then given as:

Tj =
T‖j + 2T⊥j

3
(2.17)



2-6

The ratio of two temperatures (perpendicular and parallel) is called anisotropy and is

expressed as:

Rj =
T⊥j

T‖j
(2.18)

Parallel Beta (β‖j): It is the ratio of parallel thermal energy of a species to the

magnetic pressure energy stored in the field.

β‖j =
nj kB T‖j
B2

0/(2µ◦)
(2.19)

As we will see later in this chapter (see Section 2.2.2) the values of parameters Rj and

β‖j play an important role in determining if a region of plasma is stable or unstable.

Shape of a VDF:

In general the VDF can take a variety of forms as long as they conform to the laws of

probability. For a plasma in local thermodynamic equilibrium, it takes the shape of a

Maxwellian distribution as shown in Equation (2.20).

fj(v) =
nj(

πw2
j

)3/2
exp

(
−|v − v0|2

w2
j

)
(2.20)

where v0 is the streaming velocity of the plasma. Each species (j) in the plasma has

its own VDF, the statistical moments of which give the species’ bulk parameters (e.g.,

density and velocity).

One can define a direction based on the background field present in the plasma.

If we assign the direction along the magnetic field as the parallel direction (represented

by ‖) and the other two orthogonal directions as the perpendicular direction (repre-

sented by ⊥), the total magnetic field can be expressed in this new coordinate system

as:

B = B‖ ê‖ +B⊥ ê⊥ (2.21)

where ê‖ and ê⊥ are the unit vectors along and perpendicular to the magnetic field.
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It is often easier to work with VDFs in this coordinate system, thus we rewrite

Equation (2.20) for a species j in the new coordinate system as:

fj(v) =
n

π3/2w2
⊥jw‖j

exp

(
−(v‖ − v‖0j)

2

w2
‖j

− |v⊥ − v⊥0j|2
w2
⊥j

)
(2.22)

The values of v‖0j and v⊥0j are often different resulting in a slightly different VDF

in the two directions. For such a case, the VDF is referred to as the bi-Maxwellian

distribution.

Though in this thesis we use Equation (2.22) as the standard/default VDF

unless otherwise stated, it must be noted that for solar wind, especially at 1 au, the VDF

departs significantly from a simple bi-Maxwellian (Feldman et al., 1974; Feldman et al.,

1974; Marsch et al., 1982b; Alterman et al., 2018). Ion VDFs often have an asymmetry

which can be more accurately accounted for by superposition of a differentially flowing

bi-Maxwellian (Alterman et al., 2018). Other forms of distribution such as kappa

distribution has also been used to study the non-Maxwellian features of VDF like

enhanced tail (Pierrard & Lazar, 2010; Pierrard & Pieters, 2014; Maksimovic et al.,

1997; Nicolaou et al., 2020).

2.2 Linear Microkinetic Instabilities

2.2.1 The Linear Dispersion Relation

Though in Section 2.1.1 we made several assumptions and used our a priori

knowledge of the system, solving Equation (2.12) for even a simple distribution like the

bi-Maxwellian (Equation (2.22)) is quite complicated and computationally expensive.

Coupling between fields produced by one species with another species complicates it

further. Linearization (or linear analysis), where one assumes plain wave perturbation

in fields and the VDF helps simplify the problem while keeping the underlying physics

of the equations intact as long as the fluctuations have small amplitude relative to

the background values. In standard linear theory, we assume an equilibrium (i.e.,

constant) background and perturb it with a small-amplitude sinusoidal fluctuation of

wave vector k and angular frequency ω. The goal then is to derive, for a given plasma,



2-8

the dispersion relation: the relationship between k and ω. Under this assumption one

can rewrite Equations (2.8) and (2.9) as:

fj(x,v, t) = f 0
j (x,v) + f 1

j (x,v, t)

= f 0
j (x,v) + f 1

j (k, ω,v) e(i(k·x−ωt))
(2.23)

B(x, t) = B0(x) + B1(x, t)

= B0(x) + B1(k, ω) e(i(k·x−ωt))
(2.24)

E(x, t) = E0(x) + E1(x, t)

= E0(x) + E1(k, ω) e(i(k·x−ωt))
(2.25)

Where k and ω are the wavenumber vector and the frequency of perturbation, respec-

tively. Equations (2.23) to (2.25) along with Maxwell’s equation’s (Equations (1.3)

to (1.6)) help us drive the dispersion relations. In order to do so, we start with some

simple assumptions and conditions. We work in a frame of reference where the zeroth

order current density (J0(x)) and electric field (E0(x)) are zero and the magnetic field

(B0(x)) is constant. Thus Equations (2.24) and (2.25) can be rewritten as:

B(x, t) = B0 + B1(x, t) (2.26)

E(x, t) = E1(x, t) (2.27)

J(x, t) = J1(x, t) (2.28)

We choose a coördinate system with z-axis along the background magnetic field (B0).

The angle between the direction of propagation of fluctuation (k) and the magnetic

field is:

cos (θ) =
k ·B
kB

(2.29)

Substituting expressions for J,B and E into Maxwell’s equations (Equations (1.3)

to (1.6)) and simplifying we have:

µ◦ J
1(k, ω) =

i

ω
k×

[
k× E1(k, ω)

]
+
i ω

c2
E1(k, ω) (2.30)
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In similar fashion to the particle velocity in Equation (2.14) one can write the flux

density as:

Γ1
j (k, ω) =

∫ ∞

−∞
d3v v f 1

j (k, ω,v) (2.31)

and thus define the current density as:

J1(k, ω) =
∑

j

qj Γ
1
j (k, ω) (2.32)

For species j we can define the dimensionless conductivity tensor Sj as:

Γ1
j (k, ω) = −i ε◦ k

2 c2

qj ω
Sj(k, ω) · E1(k, ω) (2.33)

Combining Equations (2.28), (2.30) and (2.32) gives us:

D(k, ω) · E1(k, ω) = 0 (2.34)

where,

D(k, ω) =
(
ω2 − c2 k2

)
I + c2 k k + c2 k2

∑

j

Sj(k, ω) (2.35)

with I being the 3-dimensional identity matrix and k k being the dyadic2 product of

the wavevector. For Equation (2.35) to be true, E1 cannot be allowed to go to zero

since that would allow perturbations in the system to vanish. Hence we must have the

determinant of D(k, ω) go to zero, thus:

det(D(k, ω)) = 0 (2.36)

which is the plasma dispersion relation. Gary (1993) notes that this equation can be

solved “either as a boundary value problem (ω is given as real, one solves for a complex

component of k) or as an initial value problem (k is given as real, one solves for complex

ω)”.

2 The dyadic product between two vectors a and b is simply the product between the
vector and its transpose, so one has a b = a bT , which results in a rank-two tensor.
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Equation (2.36) in general gives infinite number of solutions for ω for any value

of k and a set of plasma parameters. Thus ω(k) is a multi valued function with multiple

branches corresponding to different modes (see Schwartz (1980, Figure 2)). However

most modes are strongly damped and thus dissipate before they can substantially effect

the plasma.

2.2.2 Temperature Anisotropy Induced Instabilities

In a homogeneous plasma (PDF is independent of position) in local thermody-

namic equilibrium (LTE), all fluctuations (at any k and ω) are damped and thus have

a decaying amplitude. However, departure from LTE because of the non-Maxwellian

properties of VDFs (temperature anisotropy or relative drift between two different

species, etc.) introduce free energy into the system. This results in circumstances

where instead of getting damped some perturbations grow exponentially and make the

system unstable. The rate at which such a perturbation propagates and gets damped

or grows is computed by solving the dispersion relation (Equation (2.36)). Solutions

of Equation (2.36) using the initial value problem method gives ω, which is in general

complex and can be written as:

ω = ωr + iγ (2.37)

where, ωr is the real component and γ is the damping rate (γ < 0) or growth rate

(γ > 0). In the presence of a growth rate, the fluctuations present in the system start

to grow exponentially. If the process continues, fluctuations start having amplitudes

comparable to the background value, which makes the assumption of linearity void and

makes the system non-linear. The state of the system can no longer be predicted by

linear theory and instead relies on non-linear dynamics.

When an instability has γ = 0 for any wave vector, we call it threshold of the

associated instability. We also define γmax for a given branch of dispersion solutions

as the maximum value of γ for different wavenumbers (k) and for all propagation
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directions (θ). ωmax and kmax are then defined as the values of ω and k corresponding

to γ = γmax respectively. Mathematically this can be written as:

γjmax = max
(
γj (k, θ)

)
∀ (k, θ) (2.38)

where j represents the branch of dispersion solutions for which γ was computed.

In this thesis we consider ion temperature anisotropy as the only source of free

energy. For instability driven by ion temperature anisotropy, there are four distinct

modes depending on the anisotropy value (Rp) and the direction of propagation (θ).

For parallel propagation (θ = 0), there are two modes: ion cyclotron for Rp > 1 and

parallel firehose for Rp < 1. In the oblique direction (0 < θ < 90), the corresponding

instabilities are mirror (Rp > 1) and oblique firehose (Rp < 1). It is worth noting that

neither of these two oblique instabilities propagate. Table 2.1 gives a summary of all

four instabilities discussed.

Table 2.1: List of four temperature-anisotropy induced instabilities in plasma

Anisotropy Range Parallel (ωr > 0) Oblique (ωr = 0)
Rp > 1 Ion cyclotron Mirror
Rp < 1 Parallel firehose Oblique firehose

2.2.3 Computing Growth Rates

Computation of growth rates (γ) for any given value of the plasma parameters

for a given branch of instability means solving Equation (2.36) for all different values

of k. This is generally done by using a numerical dispersion solver. This project used

tables of γmax as a function of the plasma parameters developed by Maruca et al. (2012)

using the software of Gary (1993). For our case, given a value of Rp and β‖p, we check

the table for values of (Rp, β‖p) that are closest to the input value and then use an

interpolation technique (cubic spline interpolation) to get the value at that exact input

point.

Once we get the γmax value corresponding to an instability, we normalize it to

the cyclotron frequency of protons (γmax → γmax/Ωcp). However, not all computed
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values of the growth rate will have a significant effect on the plasma dynamics. As is

expected if growth rate is high, the instability grows faster and conversely it will take

the instability a long time to manifest or change the dynamics if it has a small growth

rate. Thus, one can think of 1/γ as a proxy for the amount of time it will take for

the instability to manifest itself. For a positive but an infinitesimal value of γmax, the

value of time will be much, much greater than the other characteristic time scales of

the system, which means the instability will never have time to significantly affect the

plasma. We thus define a cut-off value of growth rates, in units of proton cyclotron

frequency, as:

γjmax,cut-off = 10−5 Ωcp (2.39)

For any combination of (Rp, β‖p) if the value of γmax/Ωcp is less than 10−5 we essentially

set those values to zero and assume that the plasma is completely stable at those

points. Choosing this cut-off is a bit arbitrary. Different studies have chosen different

threshold values. For example Gary & Cairns (1999) and Gary & Karimabadi (2006)

chose γ = 10−2 Ωcp as their cut-off, whereas both Hellinger et al. (2006) and Klein et al.

(2018) settled on cut-off value of γ = 10−3 Ωcp. As long as the cut-off value of γ is

significantly smaller than that of other relevant time scales (see Sections 3.3 and 7.3)

it can comfortably be set to zero.

2.3 Application of linear theory and observational evidence

The low density and extreme dynamics of space plasmas, such as solar wind

and the magnetosheath (see Section 1.3), ensure that they almost invariably deviate

substantially from local thermal equilibrium (Marsch, 2006; Verscharen et al., 2019).

For example, even though the majority of solar wind ions are protons (ionized hydro-

gen) or α-particles (fully ionized helium), these two particle species rarely have equal

temperatures or bulk velocities (see, e.g., Feldman et al., 1974; Marsch et al., 1982a;

Hefti et al., 1998; Kasper et al., 2008; Maruca et al., 2013). Figure 2.1 shows the

distribution of temperature for these two species using data from the Wind spacecraft
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Figure 2.1: Distribution of proton and α-temperatures at 1 au. Vertical lines show the median
temperature of each species.

(Section 4.1.1 for more details on the dataset used). Furthermore, the VDF of any

given ion species often significantly departs from the entropically favored Maxwellian

functional form (Feldman et al., 1973a; Feldman et al., 1974; Marsch et al., 1982b;

Alterman et al., 2018). Observations of solar wind and magnetosheath from multiple

spacecraft (Feldman et al., 1973b; Marsch et al., 1982b; Kasper et al., 2002) have shown

that the protons exhibit distinct kinetic temperatures, T⊥p and T‖p. Both values of

Rp > 1 and Rp < 1 are commonly observed in the solar wind and in Earth’s mag-

netosheath, making it an ideal candidate for the application of linear Vlasov theory.

Figure 2.2 shows distribution of Rp for solar wind at 1 au and magnetosheath.

As discussed in Section 2.2.2 if Rp departs sufficiently from unity, it can trigger a

kinetic microinstability: a short-wavelength fluctuation with an exponentially growing

amplitude. The threshold Rp-value for the onset of a proton temperature-anisotropy

instability depends on all plasma parameters (e.g., composition and relative tempera-

tures), depending most strongly on proton parallel beta (β‖p). Figure 2.3 shows various

thresholds on an (Rp, β‖p) plane for the four modes of instabilities. As is evident, at
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Figure 2.2: Distribution of proton temperature anisotropy at 1 au (red) and in the magne-
tosheath (blue). Vertical lines show the median values at each location.

fixed Rp a slight increment in β‖p can lead to significant increase in the growth rate.

These instabilities have threshold Rp-values, which means that they can effec-

tively limit the degree to which proton temperature can depart from isotropy. If an

unstable mode grows and does not saturate, it eventually becomes nonlinear, continues

to scatter particles in phase space, and eventually drives the VDF toward local ther-

mal equilibrium. Multiple studies have analyzed large datasets from various spacecraft

and under the assumptions of a spatially homogeneous plasma and a bi-Maxwellian

proton velocity distribution; such studies have found that the joint distribution of

(β‖p, Rp)-values from the interplanetary solar wind largely conform to the limits set by

the instability thresholds (Gary et al., 2001; Kasper et al., 2002; Hellinger et al., 2006;

Matteini et al., 2007). Figure 2.4 shows the joint probability distribution of (Rp, β‖p)

and the thresholds corresponding to different instability modes for γmax/Ωcp = 10−2 3.

We can see that the probability density decreases significantly as one moves closer to

3 Please see Appendix A for more details on how these figures were made and how
thresholds were computed



2-15

100 101 102 103

β‖p ≡ 2µ0npkBT‖p/B
2

100

R
p

=
T
⊥
p
/T
‖p

Parallel Firehose

10 −
5

10 −
3

10 −
1

γmax/Ωp

Cyclotron

100 101 102 103

β‖p ≡ 2µ0npkBT‖p/B
2

Oblique Firehose

10 −
5

10 −
3

10 −
1

γmax/Ωp

Mirror

Figure 2.3: Contours of constant growth rates.

any of the threshold values. A recent study by Maruca et al. (2018) confirmed the same

effect in Earth’s magnetosheath, which is shown in Figure 2.5 (see Appendix A for ex-

amples of a (β‖p, Rp)-plot in other systems). Additional studies have found that plasma

with unstable (β‖p, Rp)-values is statistically more likely to exhibit enhancements in

magnetic fluctuations (Bale et al., 2009) and proton temperature (Maruca et al., 2011).

These findings suggest that the instabilities not only regulate temperature anisotropy

in space plasmas but, in doing so, play an integral role in the large-scale evolution of

the plasmas.

The empirical studies of (β‖p, Rp)-distributions — especially that by Matteini

et al. (2007) — indicate that the instabilities globally limit proton temperature anisotropy

and affect the large-scale thermodynamics of expanding solar wind plasma. Neverthe-

less, the instabilities themselves act on far smaller scales. Indeed, Osman et al. (2012a)

found that unstable (β‖p, Rp)-values are statistically more likely to exhibit enhanced

values of the partial variance of increments (PVI), which is an indicator of intermit-

tent structure (see Section 3.2.3). This result suggests that long-wavelength turbulence
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may play a substantial role in generating the local plasma conditions that drive these

microinstabilities. Also, advancements made in numerical simulation by Servidio et al.

(2012); Greco et al. (2012); Servidio et al. (2015), with corroboration from space plasma

observations (Marsch et al., 1992; Sorriso-Valvo et al., 1999; Osman et al., 2011, 2012a;

Kiyani et al., 2009) show the importance of intermittency in interpretation of these

observations. We discuss these in more detail in Chapter 3.

2.4 Limitations of linear theory

Though linear theory works well for plasma with a homogeneous background,

when it comes to its application to study the characteristics of space plasmas, the

method is not without caveats. Multiple studies have shown space plasma to be highly

structured and thus inhomogeneous (Burlaga, 1968; Tsurutani & Smith, 1979; Ness

& Burlaga, 2001; Osman et al., 2012a,b; Greco et al., 2012). In fact, by all accounts,

inhomogeneity is ubiquitously present in space plasma, and thus any study of instabil-

ities in plasma should take into account the inhomogeneity of the background among

variation in other parameters.

Consequently, use of linear theory for such studies of course presents a theoret-

ical inconsistency in the application of computed instability thresholds to study the

properties of plasma because of the underlying disparity between the assumptions of

linear theory and the observed space plasma. However, several studies over the last

three decades have presented empirical evidence of agreement between the observations

and theoretical predictions (Gary, 1991; Gary et al., 1994, 2001; Gary & Karimabadi,

2006; Kasper et al., 2002; Hellinger et al., 2006; Maruca et al., 2011, 2012; Maruca et al.,

2018). These studies strongly suggest that linear instability thresholds are indeed ef-

ficient in restricting the plasma/plasma VDF in a narrow region of (β‖p, Rp)-plane,

inhibiting the excursion of plasma VDFs to extreme anisotropy regions at high β‖p.

Although limitations on spatial and temporal resolution using present-day spacecraft

make it difficult to directly demonstrate the existence of such instabilities in space

plasmas, work done by, Bale et al. (2009); He et al. (2011); Podesta (2013); Jian et al.
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(2009, 2010); Jian et al. (2014); Klein et al. (2014); Telloni & Bruno (2016); Gary

et al. (2016) among others provide indirect evidence for the presence of various differ-

ent instabilities. More details can be found in Verscharen et al. (2019) and references

therein.

Given these limitations of linear theory and its application, we have to look

into the non-linear processes and study how those processes affect the dynamics of the

plasma. Chapter 3 introduces some the non-linear processes in plasmas and discusses

how they affect the dynamics.
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Chapter 3

NON-LINEAR PLASMA DYNAMICS

3.1 Introduction to Turbulence

In laminar flow, different layers of fluid move smoothly without much mixing

between layers, and the characteristic quantities/parameters - like velocity, pressure, or

density - vary smoothly in a predictable way. A system where these quantities fluctuate

in a chaotic fashion is called turbulent and the phenomena is called turbulence. Because

of the chaotic nature of the fluctuations, unlike the laminar flow, prediction of the

exact state of the system is essentially impossible. This makes a system extremely

complicated to study, so much so that Sir Horace Lamb once remarked (Goldstein,

1969):

I’m an old man now, and when I die and go to heaven there are two matters
on which I hope for enlightenment. One is quantum electrodynamics, and
the other is turbulent motion of fluids. And about the former I’m rather
optimistic.

Turbulence is extremely complicated and the fact that it is ubiquitous in nature

(and in most man made processes involving fluids) makes it unavoidable.

Whether a given fluid system will develop turbulence largely depends on its

viscosity, which is the liquid equivalent of friction and is a measure of how easy it is to

for the liquid to flow (Chapman, 1916; Jeans, 1905) and its Reynolds number (Reynolds,

1883, 1886; Matthaeus & Montgomery, 1980). A small Reynolds number means that

the system is laminar whereas a high value Reynolds number implies turbulent flow.

For a neutral fluid it is defined as:

Re = L
u

ν
(3.1)
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where L is the characteristic length of the system, u is the mean flow velocity and

ν is the kinematic viscosity. For a similar amount of force or external pressure, a

highly viscous fluid or one with low Re can maintain laminar flow for much longer

duration than a fluid with low viscosity or high Re. Presence of viscosity in a fluid

leads to interaction between different layers or scales and results in energy transfer

from larger to smaller scales through eddies which eventually reaches the smallest scale

and dissipate as heat (Kolmogorov, 1941a,b) in a process called energy cascade in

turbulence. In a weakly collisional and magnetized plasma, the presence of charged

particle and magnetic field complicates the process. For a system like solar wind, the

situation is further complicated because of the relatively similar size of the system and

the mean free path1(Echim et al., 2010, Appendix 2) both of which are of the order of

1 au (Verscharen et al., 2019, Table 1) and thus one cannot use the classic methodology

developed by Enskog (1917) and Chapman (1918).

Turbulence cascade has far reaching consequences for both neutral fluids and

plasmas. It provides a pathway for the dissipation or transfer of energy from large

scales, where they can be introduced, to smaller scales. In the next section (Section 3.2)

we will look at some of the consequences of turbulence in space plasmas. We discuss

only those which are relevant to this thesis. In Section 3.3 we discuss the linear and

non-linear time scales associated with their respective phenomena.

3.2 Consequences of Turbulence in Space Plasmas

In-situ observations and theoretical interpretations have established the ubiq-

uitous presence of turbulence in space plasmas (Matthaeus & Velli, 2011; Matthaeus,

2021, and references therein). In this section we discuss three of the major conse-

quences that arise because of turbulence in space plasmas. Though these three are not

the only consequences of turbulence, these were selected because of their relevance to

this thesis, as we will see in Chapters 5 to 7.

1 Mean free path is defined as the average distance travelled by particles between two
successive collisions.
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3.2.1 Heating of plasma

In space plasmas, under the assumption that the magnetic field changes slowly

(slower than the ion gyrotropic time scale), the magnetic moment (µ) of the particle

is conserved (Baumjohann & Treumann, 1996; Verscharen et al., 2019). Thus, we can

write:

dµ

dt
= 0 (3.2)

where, µ = mpw
2
⊥p/(2B), mp is the proton mass, w2

⊥p is the perpendicular thermal

velocity and B is the magnitude of magnetic field. Writing Equation (3.2) in terms of

the proton-perpendicular temperature using Equation (2.16), we have:

d

dt

(
kBT⊥p

B

)
= 0 (3.3)

or:

T⊥p ∝ B (3.4)

In a similar vein for the parallel direction, under the assumption of no dissipation, we

have:

d

dt

(
kBT‖pB2

n2
p

)
= 0 (3.5)

or:

T‖p ∝
(np

B

)2

(3.6)

These two conservation laws (Equations (3.4) and (3.6)) for the double-adiabatic invari-

ants are also called Chew–Goldberger–Low or CGL invariants (for a bit more detailed

discussion and derivation of CGL invariants, see see Appendix B).

In the inner heliosphere, the magnitude of magnetic field (B) varies with solar

distance as B ∝ r−1.5 (Hellinger et al., 2013; Hanneson et al., 2020), and the proton

density varies as np ∝ r−1.9 (Hellinger et al., 2013). If the CGL invariants were actively
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being conserved, the radial dependence for the perpendicular and parallel temperatures

would be:

T⊥p ∝ r−1.5 (3.7)

T‖p ∝ r−0.8 (3.8)

However, in-situ observations in the inner as well as outer heliosphere show a much

flatter curve than those predicted by Equations (3.7) and (3.8). Based on Helios 1

and Helios 2 data, Hellinger et al. (2013) reported the value of exponents to be −0.58

and −0.59 for perpendicular and parallel temperatures respectively and −0.58 for the

scalar temperature for r ∈ [0.3, 1] au.

Flatter than expected temperature curves imply the existence of some mecha-

nism which continues to heat the solar wind beyond the corona in both the parallel

and perpendicular directions. Indeed, several studies (Coleman Jr, 1968; Verma et al.,

1995; Sorriso-Valvo et al., 2007; MacBride et al., 2008) predict around 1000 kJ/kg/sec

is being added as internal energy to the plasma at 1 au. The dissipation of this energy

at least partially accounts for the flatter radial trend in solar-wind temperature than

that predicted by the double adiabatic expansion assumption.

3.2.2 Anisotropy

In Section 2.2.2 we discussed the fact that because of anisotropy, VDFs have

excess free energy that results in development of microkinetic instabilities, though we

did not discuss the origin of such anisotropies. As we saw in Section 3.2.1, turbulence

results in the transfer of heat from larger to smaller scales. However, in presence of an

external background magnetic field the rate at which transfer occurs is not identical

in each direction. Because of an uneven transfer along the parallel and perpendicular

direction relative to the average magnetic field (inhibition along the direction of mag-

netic field), there is an imbalance between the amount of heating in different directions,

resulting in anisotropy (Shebalin et al., 1983; Oughton et al., 1994).
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3.2.3 Intermittency

The solar wind at 1 au exhibits localized structures that have been studied since

the pioneering work of Burlaga (1968), Hudson (1970), Tsurutani & Smith (1979),

and more recently by Ness & Burlaga (2001), Neugebauer (2006), ErdőS & Balogh

(2008). Several studies have found evidence that plasma turbulence generates these

structures dynamically (Matthaeus & Lamkin, 1986; Veltri, 1999; Osman et al., 2013).

The structures are inhomogeneous and highly intermittent (Osman et al., 2011, 2013;

Greco et al., 2008). Intermittency or burstiness in measured properties of turbulence

is typically associated with the dynamical formation of coherent structures in space.

These arise as a direct consequence of discontinuities in the magnetic field (Greco et al.,

2008, 2009; Vasquez et al., 2007).

One method for identifying a discontinuity in a time series of magnetic-field (or

any other field in general) data is Partial Variance of Increments (PVI) (Greco et al.,

2008). PVI is a powerful and reliable tool for identifying and locating such regions and

it is unbiased towards any special structure since it cares only about the discontinuities

in the magnetic field. This also manifests as a shortcoming of the technique since

one cannot use it to study different kinds of discontinuities like radial or tangential

discontinuities. Greco et al. (2008) defines PVI as:

I(t, δt) =
|∆B(t, δt)|√
〈|∆B(t, δt)|2〉

(3.9)

where, ∆B(t, δt) = B(t + δt) −B(t), is the vector increment in magnetic field at any

given time t and a time lag of δt. 〈...〉 is the ensemble average over a period of time,

and I is the normalized PVI. For studying local structures induced by turbulence, δt

is typically chosen to be, assuming the validity of Taylor’s hypothesis (Taylor, 1938)

which was found to be valid for inner heliosphere (Chasapis, 2021), of the order of di.

3.3 Linear and Non-linear Time Scales

Since turbulence is not the only process that governs the dynamics, we must

compare its characteristic timescale with other with those of other relevant processes.
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As we saw in Section 2.2.2, linear instabilities grow at growth rates of γmax. Inverse of

γmax gives us a linear time scale associated with such microinstabilities.

τlin =
2π

(γmax/Ωcp)
(3.10)

Here we have scaled time scale with the proton cyclotron frequency (Ωcp) to get a

dimensionless timescale. This gives us an idea of timescales required by such linear

processes to affect the local plasma.

In a similar vein, one can compute nonlinear frequency associated with turbu-

lence at any position r for a lag length scale of ` as follows2:

ωnl ∼ δb`/` (3.11)

where δb` is the change in the longitudinal magnetic field:

δb` =
∣∣∣ˆ̀· [b(r + `)− b(r)]

∣∣∣ (3.12)

where b is the total magnetic field expressed in local Alfvén speed units (b = B/
√
µ◦npmp).

Thus nonlinear time scale has the expression:

τnl =
2 π

(ωnl/Ωcp)
(3.13)

These two processes under certain conditions might compete with each other and de-

pending on the value of other kinetic or turbulent parameters one or the other may

dominate. A simplistic understanding of this competition would imply that if one

time scale is significantly smaller than the other, then the processes associated with

former time scale will dominate the dynamics of the plasma. However, as we will see

in Chapter 7 the situation is a bit more complicated than that.

2 Ideally, velocity and not the magnetic field should be used for computing ωnl. How-
ever, neither of the spacecraft data we used has enough resolution for such computation.
We thus fall back to using magnetic field under the assumption of Alfvénic fluctuations.
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Chapter 4

DATASETS AND ANALYSIS METHODS

We utilized multiple datasets (both observational and theoretical) while working

on this thesis. This chapter gives a brief overview of all the datasets. Table 4.2

summarizes these datasets and how they were used.

4.1 Spacecraft datasets

4.1.1 Wind

The Wind spacecraft was launched on November 1, 1994 as part of international

Solar terrestrial Physics (ISTP) with the objective of studying plasma processes in the

solar wind near earth and in magnetosphere and ionosphere (Acuna et al., 1995).

Wind is spin stabilized and makes one complete rotation every ∼ 3 seconds about axis

aligned to perpendicular to the ecliptic plane (Acuna et al., 1995; Wilson III et al.,

2021). Wind’s instruments collectively produce ∼ 1,100 data variables or datasets

(Wilson III et al., 2021). The instruments of interest to this thesis are the Magnetic

Field Investigation (MFI) and the Faraday Cup (FC).

MFI

MFI consists of two fluxgate magnetometers mounted on a boom at distances of

8 and 12 meters from the spacecraft (Lepping et al., 1995). Though occasionally MFI

can provide data as fast as 44 Sa/s1 with great accuracy (< 0.08 nT), though 10.9 Sa/s

is the standard product and was used for this thesis.

1 Samples per second.
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FC

The Solar Wind Experiment (SWE) suite includes two Faraday cups (FC)

(Ogilvie et al., 1995). Each cup measures the current from incoming charged ions

for a different energy bin during each rotation measuring current in 20 different look

directions. It has 31 energy bins which defines its resolution of the VDF. Since each

rotation lasts about 3 seconds, it takes FC roughly 93 seconds to collect the full spec-

tra. The current can then be converted to velocity of particle assuming an appropriate

charge to mass ratio. Since it takes roughly 93 seconds to get the full VDF, we get one

measurement of parameters like density, velocity, temperature etc. every 93 seconds.

Consequently, while pairing FC data with MFI data, we further averaged MFI data

to 93 Sa/s. For an in depth discussion of extracting VDF from FC observation and

computation of higher order moments see Maruca (2012a).

The wnd dataset

In this thesis we use the Wind data from 1994 to 2008, which henceforth shall

be referred as wnd dataset. In the initial data cleaning process we discarded any point

which had Rp < 0.1 or Rp > 10. We also only selected data from the pristine solar wind

and discarded everything within the bow shock region of the Earth. A more detailed

description of the data selection process can be found in Maruca (2012a, §4.1).

Computing linear growth rate and non-linear frequency: In order to

compute the value of linear growth rates at any point, we use the methodology men-

tioned in Section 2.2.3 by using the local values of Rp and β‖p. We computed ωnl using

Equation (3.11), where we used x-component2 of magnetic field for the longitudinal

direction of B. Use of x-component instead of radial component introduces a small

error in the computation of ωnl since the magnetic field at 1 au is not perfectly aligned

with the radial direction (on average, the angle between magnetic field and radial di-

rection is 45◦). The field also strongly fluctuates around the average value. Alfvén

2 For Wind, x-direction is defined by the line joining the Earth and the Sun.



4-3

speed was computed using the average field from MFI data and np from FC as per

equation Equation (1.13). For lag we used ` = 1/kmax, where kmax is the wave number

corresponding to γmax. The lag of was taken as 1/kmax in order to ensure that both

γmax and ωnl are being computed at the same scale.

4.1.2 MMS

Magnetospheric Multiscale (MMS) is a constellation of four spacecraft which

was launched by NASA on March 12, 2015. Main objective of the mission was to

study how reconnection happens in a collisionless plasma in the Earths magnetosphere

(Russell et al., 2016). MMS has 6 major instrument suites (Russell et al., 2016) and

in this thesis we used the data from FIELDS and Fast Plasma Investigation (FPI).

FIELDS

The FIELDS instrument suite consists of 2 different kind of fluxgate magne-

tometers, a search coil magnetometer and an electron drift instrument (Torbert et al.,

2016). The flux gate magnetometers are mounted at the end of two 5 m booms of

each spacecraft (Russell et al., 2016). The cadence of this FGMs is 128 Hz meaning we

get 128 samples of magnetic field vector every 1 second with an accuracy of ∼ 0.1 nT

(Russell et al., 2016; Torbert et al., 2016).

FPI

FPI uses electrostatic analyzer to measure the VDF of ions and electrons (Pol-

lock et al., 2016). It has 180◦ instantaneous polar field of view at a resolution of 15◦.

We use the proton density and temperature anisotropy which are among the standard

products of FPI. FPI works in 2 modes:

(a) Slow/Survey mode: which gives full 3-D VDF of ions every 1 second.

(b) Fast/Burst Mode: which gives 1 measurement of ion VDF every 150 ms.
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mms dataset

Though in burst mode cadence of FPI is very high they generally last for only

a few minutes. In our studies we thus used data from several different burst modes

spread over multiple years and when the spacecraft was in magnetosheath. Table 4.1

lists out all the dates and time from which data was used as well as gives value of the

plasma parameters.

Once we have the required parameters we compute other derived parameters

like γ and ωnl in the same way as mentioned in Section 4.1.1. We refer to the complete

MMS dataset as mms.

4.1.3 PSP

Parker Solar Probe was launched on August 12, 2018 with the objective to

understand the dynamical structure of the sun, study and find the processes behind

coronal heating and find out the process that accelerates energetic particles (Fox et al.,

2015). The spacecraft has 4 major instrument suites: FIELDS, SWEAP, WISPR,

IS�IS(Fox et al., 2015).

FIELDS

With main objective of measuring wave and turbulence in the inner heliosphere

FIELDS measures the magnetic field using both, search coils and fluxgate magnetome-

ters (Bale et al., 2016). All three magnetometers are mounted on a boom (search coil at

3.08 m and 2 magnetometers at 1.9 m and 2.7 m). For this thesis we use the magnetic

field data from flux gate magnetometer. At the highest cadence magnetometer can

record field at a rate of 292.969 Sa/s or 256 Sa/NYS, where 1 NYsecond is defined as

0.837 seconds (Bale et al., 2016)3. Though for this thesis we mostly used data recorded

at a slightly lower cadence of 64 Sa/S unless otherwise specified.

3 An alternate and definitely more magically colorful definition of a New York second
is given by Sir Terry Pratchett as “The shortest unit of time in the multiverse is the
New York Second, defined as the period of time between the traffic lights turning green
and the cab behind you honking.”
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SWEAP

Solar Wind Electrons Alphas and Protons or SWEAP is the particle instrument

suite on PSP and is comprised of 4 sensor instruments and provides complete mea-

surement of electron, alpha and protons which makes up for almost 99% of solar wind

(Kasper et al., 2016). Solar Probe Cup (SPC) and Solar Probe Analyzer (SPAN) make

up SWEAP. We are mostly interested in SPC which is a fast Faraday cup and looks

directly at the sun to measure the ion flux and its angle. The native cadence of SPC

is 1 Hz or 1 Sa/s at an angular resolution of 10◦, though in another mode cadence can

go as high as 16 Hz at 1◦ resolution (Kasper et al., 2016). For this thesis we used 1 Hz

data from SPC. Though for the purpose of computation of anisotropy we resampled

the data to 0.1 Hz (see Chapter 7).

psp dataset

We used the PSP data from its first encounter with the Sun (October 31 to

November 11, 2018). From SPC we got the radial proton temperature/thermal speed.

Since SPC only measures radial temperature, and proton temperature is significantly

anisotropic (Huang et al., 2020), for computation of β‖p we needed to ensure that

the temperature we were measuring was indeed parallel temperature. Thus, we only

considered data points where magnetic field was mostly radial. Any interval where

the angle between Brr̂ and B was more than 30 degrees was not considered. This

ensured that the temperature measured by SPC was indeed the parallel temperature.

We compute temperature anisotropy at a much lower cadence than the temperature

measurement (∼ 0.1 Sa/S) using the methodology described in Huang et al. (2020).

Once we have the anisotropy data along with proton density and magnetic field strength

we compute the β‖p according to Equation (2.19). We then calculate γ and ωnl using

the same methodology as mentioned in Section 4.1.1.
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4.2 Simulation datasets

Though spacecraft provide plenty of in-situ data, because of several restrictions

(e.g., cost, planning, resolution, and cadence) not every phenomena of plasma can be

studied using spacecraft data. Thus physicists often use simulations to study different

systems or verify predictions made by theories under certain conditions. For space

plasmas there are 3 types of simulations that are usually carried out.

4.2.1 MHD Simulations

MHD simulation treats the plasma as an electromagnetic, conducting fluid hav-

ing one characteristic velocity and temperature and studies its dynamics by numerically

solving the required MHD equations. For more details about the underlying physics

and some of the relevant equations see (Hossain et al., 1995).

4.2.2 Hybrid Simulations

In hybrid simulations, instead of treating the whole system as a fluid, electrons

are treated as massless fluid and protons are treated as massive particles. For the

details of such simulations and equations used for it refer to (Terasawa et al., 1986;

Vasquez, 1995; Parashar et al., 2009).

4.2.3 Kinetic Simulations

In kinetic simulations with particle in cell (PIC) we solve Vlasov equation (see

Equation (2.12)) along with Maxwell’s equation (see Equations (1.3) to (1.6)) by treat-

ing plasma as a collection of individual particles. PIC simulations are often performed

on either a 2.5D system or a full 3-D system.

3-D PIC Simulations

In full 3-D system the parameters are setup such that the vectors can fluctuate

in all three directions. For this thesis, we used the output of a fully kinetic 3-D

simulation performed by (Roytershteyn et al., 2015). In the simulation the system was

initially perturbed (|δB2| = B2
0) and was then left to evolve under its own forcing.
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The undisturbed state of particle distribution was Maxwellian (for both proton and

electron) at equal temperature (Tp = Te). Some other parameters were βp = βe =

0.5, Rp = 1, ωpe/Ωce = 2, mp/me = 50 and the background magnetic field was in z-

direction. Size of the box was l ≈ 42 dp, with a resolution of 20483 cells. Average

number of particles in each cell was 150 making a total of ∼ 2.6 × 1012. We refer to

this dataset as ros.

2.5-D Simulations

In case of a 2.5D simulation the plasma parameters are allowed to vary only

in 2 dimensions, though they have all 3 components. Depending on the direction of

background magnetic field one can further classify 2.5-D simulation in following classes:

(a) 2.5D perpendicular PIC simulation: The parameters are allowed to

vary only in 2 spatial dimensions with background magnetic field perpendicular to the

simulation plane.

(b) 2.5D oblique PIC simulation: The parameters are allowed to vary only in

2 spatial dimensions with background magnetic field neither parallel nor perpendicular

to the simulation plane.

(c) 2.5D parallel PIC simulation: The parameters are allowed to vary only

in 2 spatial dimensions with background magnetic field parallel to the simulation plane.

In this thesis we used both perpendicular and parallel simulations. For the 2.5-D

perpendicular simulation we used the output from a P3D code (Zeiler et al., 2002). The

initial conditions were such that we have mp/me = 25, Tp = Te, βp = βe = 0.6, δB =

0.5B0 and the length of the box was l = 149.6 dp at a resolution 40962 of with each cell

having an average of 3200 particles with each species resulting in a total of 1.07× 1011

particles. For more details on the simulation refer to (Parashar et al., 2018a). We refer

to this dataset as 149p6.

We also used a 2.5-D parallel simulation where the background magnetic field

was in the plane with B0 = B0x̂,mp/me = 25, ωpe/Ωce = 8, βp = βe = 0.6. The size



4-8

of the box was l‖ = 149.6 dp (in parallel direction) and l⊥ = 37.4 dp (in perpendicular

direction) at a resolution of 4043× 1000 with an average of 800 particles/cell resulting

in a total of 6.5× 109 particles. More information about this simulation can be found

in (Parashar & Gary, 2019; Gary et al., 2020). We refer to this dataset as kaw.

For 2 datasets of simulations (kaw and 149p6), once we have the value of Rp

and β‖p we compute γ and ωnl in the same way as mentioned in Section 4.1.1. For the

case ros, for computation of ωnl, because of some computational limitations, the value

of lag was kept fixed at 1 dp.
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Table 4.1: Burst data duration and median values of some plasma parameters

Date
(YYYYMMDD)

Time (HH:MM:SS) (GMT)
Median Values

Start
HH:MM:SS

End
HH:MM:SS

20160111 00:57:04 01:00:33

np = 52.04 cm−3,
vp = 261.47 km/s,
Tp = 2.53 ×106K,
Rp = 1.09,
β‖p = 6.54

20160124 23:36:14 23:47:33

np = 32.57 cm−3,
vp = 242.21 km/s,
Tp = 3.98 ×106K,
Rp = 0.99,
β‖p = 12.57

20170118 00:45:54 00:49:43

np = 198.26 cm−3,
vp = 135.11 km/s,
Tp = 1.31 ×106K,
Rp = 0.97,
β‖p = 10.66

20171226 06:12:43 06:52:22

np = 22.29 cm−3,
vp = 243.50 km/s,
Tp = 2.66 ×106K,
Rp = 1.04,
β‖p = 4.29

All

np = 2.94 cm−3,
vp = 240.15 km/s,
Tp = 2.74 ×106K,
Rp = 1.01,
β‖p = 5.34
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Table 4.2: Datasets used in this study

Dataset Type of data median values List of chapters

149p6 PIC Simulation (2.5-D)
Rp = 0.89,
β‖p = 0.67

Chapters 5 and 7

kaw PIC Simulation (2.5-D)
Rp = 0.83,
β‖p = 0.64

Chapters 5 and 7

ros PIC Simulation (3-D)
Rp = 1.04,
β‖p = 0.84

Chapters 5, 7 and 8

mms
Spacecraft Observation
(Magnetosheath)

see Table 4.1 Chapters 5 and 7

wnd
Spacecraft Observation
(Solar Wind at 1 au)

Rp = 0.50,
β‖p = 0.69

Chapters 5 and 7

psp
Spacecraft Observation
(Solar Wind at 0.2 au)

Rp = 1.44,
β‖p = 0.50

Chapters 6 and 7



5-1

Chapter 5

ASSOCIATION OF INTERMITTENCY AND MICROINSTABILITIES

5.1 Overview

As discussed in Section 2.3, weakly collisional space plasmas are rarely in lo-

cal thermal equilibrium and often exhibit non-Maxwellian electron and ion velocity

distributions that lead to the growth of microinstabilities (see Section 2.3). These

instabilities play an active role in the evolution of space plasmas (see Section 2.3),

as does ubiquitous broadband turbulence induced by turbulent structures (see Sec-

tion 3.2). This Chapter compares linear and non-linear phenomena of a variety of

2.5-dimensional and 3-dimensional Particle-In-Cell (PIC) simulation for the forward

cascade of Alfvénic turbulence in a collisionless plasma against the same properties of

turbulence observed by the Magnetospheric Multiscale Mission (MMS) in the terrestrial

magnetosheath and the Wind spacecraft in the solar wind at 1 au.

Both the simulation and the observations show that strong temperature anisotropies

and growth rates occur highly intermittently in the plasma, and the simulation further

shows that such anisotropies preferentially occur near current sheets. This suggests

that, though microinstabilities may affect the plasma globally, they act locally and

develop in response to extreme temperature anisotropies generated by turbulent struc-

tures.

Section 5.2 starts with the introduction of the topic and the motivation for such

a study. We discuss the data analysis technique in Section 5.3 (PIC data in Section 5.3.1

and spacecraft data in Section 5.3.2). Section 5.4 presents the result highlighting the
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observations made using the different datasets and ends with the conclusion and some

discussion of further possibilities in Section 5.5.1

5.2 Introduction

The focus of this study was protons and in particular their temperature anisotropy

(Rp) (see Equation (2.18)). As discussed in Section 2.2, a sufficient departure of Rp

from Rp = 1 triggers one or more modes of . These linear instabilities and their thresh-

olds are predicted by linear Vlasov theory (see Section 2.2) under the assumption of a

homogeneous background of magnetic field. However, the space plasma is rarely ho-

mogeneous which raises a fundamental issue of reconciling the assumptions of theory

of microinstabilites with the observed state of space plasma. Multiple studies have

shown space plasma to be highly structured and thus inhomogeneous (Burlaga, 1968;

Tsurutani & Smith, 1979; Ness & Burlaga, 2001; Osman et al., 2012a,b; Greco et al.,

2012). This has been a persistent question in the field and a prime motivation for our

work which formalizes the implications of Osman et al. (2012a).

As was highlighted in Section 2.4, owing to inhomogeneous nature of the plasma

background an ideal study would include the effect of these background inhomogenities

in computing the growth rates. However we do not have any such established method-

ology and development of such a method is beyond the scope of this study. We thus are

restricted to use the established theory of microinstabilities, and calculate instability

thresholds from linear Vlasov equations as discussed in Section 2.1.

5.3 Data and Analysis

5.3.1 PIC Simulation

Linear Vlasov calculations were applied to the output of a variety of fully ki-

netic, particle-in-cell (PIC) simulation in homogeneous, collisionless, magnetized plas-

mas. Table 4.2 gives detail of different simulation and the starting value of important

parameters of each data set.

1 Part of this study was published in Qudsi et al. (2020a).
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For 2.5-D simulations, though all vector quantities (like magnetic field B, cur-

rent density J etc.) had three components they varied only in the xy-plane for sim-

ulation 149p6 and perpendicular to the xy-plane for simulation kaw (see Chapter 4

for a detailed discussion of different types of dataset used in this study). For 149p6

the initial conditions were chosen such that the particle distribution was Maxwellian,

βp = βe = 1.2, Rp = 1, Tp = Te and the rms value of fluctuations in magnetic

and velocity fields were half of the background values. For kaw the simulation had

βp = βe = 0.6, Rp = 1, Tp = Te as the initial condition whereas for the full 3-D sim-

ulation (ros) we had βp = βe = 0.5, Rp = 1, Tp = Te and the background magnetic

field was in z-direction. Table 4.2 lists out the details of all three simulations (and

other datasets) in tabular form. It is worth noting that high β-values as well as values

much lower than 1 makes the PIC computations very expensive and thus were avoided.

After the initial condition was finalized, the system was allowed to evolve without any

external forcing. Fluctuation in the observed magnetic and velocity fields produce and

drive the turbulence in the plasma.

Once the simulation data was ready, we computed the value of linear growth

rates (γmax) at each point using methodology discussed in Section 2.2.3. Results per-

taining to this analysis is discussed in Section 5.4.1

5.3.2 Space Observations

Similar analysis was carried out on data from two separate space missions:

MMS and Wind. MMS is a constellation of four identical spacecraft designed to study

reconnection in the magnetosphere of the Earth (Burch et al., 2016). We used proton

density and temperature-anisotropy data from the Fast Plasma Investigation (FPI)

and magnetic-field data from the Fluxgate Magnetometer (FGM). In burst mode FPI

measures one proton distribution every 150 ms (Pollock et al., 2016), and the cadence

of FGM is 128 Hz (Russell et al., 2016) (see Section 4.1.2 for a more detailed discussion

of MMS and some of its instruments).
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The measured temperature-anisotropy and magnetic field vectors were used to

compute the value of the linear instability growth rates (γmax) for each point in the time

series using the same methodology as described in Section 2.1. Though the analysis was

carried out on several intervals of burst-mode (high cadence) measurements, here only

results from a 40-minute long period of burst data from 26-12-2017 starting at 06:12:43

UTC is being presented (see Table 4.1). This period was chosen in part because of its

relatively long duration compared to typical burst mode intervals. During this period,

average proton density was 22 cm−3, the average value of β‖p was 4.5 and average bulk

velocity of the plasma was 238 km/s. Parashar et al. (2018b) describes this data interval

in more detail.

For the case of solar wind, we used the data from Wind spacecraft’s Faraday

Cup (FC) and Magnetic Field Investigation (MFI) instruments (see Section 4.1.1 for a

more detailed discussion of instruments and dataset).

5.4 Results

5.4.1 PIC simulation

Figures 5.1 to 5.3 show five parameters — Rp, β‖p, Jz, γ‖max and γ∦max — across

the simulation box for three different simulations (149p6, kaw and ros respectively).

For the 3-D case (Figure 5.3), we show the variation of parameters for a selected slice

of xy-plane.

Panels (a) to (c) of each (Figures 5.1 to 5.3) show the three parameters — Rp,

β‖p, and Jz — across the simulation box. In all the cases the system is strongly tur-

bulent and exhibits structures of various scales. The extreme values of each parameter

occur in distinct regions that occupy only small fractions of the total volume. That

is, these quantities are intermittent, which is correlated with the existence of sharp

gradients and coherent structures (Greco & Perri, 2014; Matthaeus et al., 2015; Greco

et al., 2016; Perrone et al., 2016, 2017). Further, extreme values of Rp and β‖p reside

near (but are not exactly coincident with) extreme values of Jz. These concentrations
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Figure 5.1: Colorplot of (top row, left to right) β‖p, Rp and Jz for 149p6 dataset. Panel (d) and
(e) (bottom row) show the spatial distribution of γmax for parallel and oblique propagation
respectively corresponding to first two panels. Figure reproduced from Qudsi et al. (2020a)
with the permission of AIP Publishing (see Appendix D).

of current densities frequently correspond to current sheets, as reported by Parashar

& Matthaeus (2016).

Using the method described in Section 2.2.3 and chapter 4, we computed γmax for

the (β‖p, Rp)-pair at each grid point of the simulation box, where γmax is the maximum

value of growth rate for all possible values of propagation vector (k). The fourth and

fifth Panels (d) and (e) of Figures 5.1 to 5.3 show the spatial distribution of growth

rates for the solutions with positive growth rates, corresponding to the first two panels

of the same figure. As described in Section 2.2.3, for γmax, we imposed a cut-off at

https://publishing.aip.org/
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Figure 5.2: Colorplot of (top row, left to right) β‖p, Rp and Jz for kaw dataset. Panel (d) and
(e) (bottom row) show the spatial distribution of γmax for parallel and oblique propagation
respectively corresponding to first two panels.

10−5 Ωp; thus growth rates less than 10−5 Ωp are considered to be 0. The Panel (d) of

each figure (Figures 5.1 to 5.3) corresponds to the parallel modes (cyclotron for Rp > 1

and parallel firehose for Rp < 1), whereas the Panel (e) are for the oblique propagation

(mirror for Rp > 1 and oblique firehose for Rp < 1). The paucity of blue color in the

fifth panel of Figures 5.1 and 5.2 implies that the β‖p (and/or Rp) was rarely high (low)

enough to excite any mode of oblique firehose instability.

Comparing Panel (b) to Panel (d) and (e) of these figures, we see that values

of γmax > 0 are concentrated in distinct, thin regions of the xy-plane where extreme

values of temperature anisotropy also occur. We also note that, for Figure 5.1 because

the simulation is 2.5D with B0 perpendicular to the simulation plane, the growth of

instabilities such as the proton cyclotron and the parallel proton firehose with max-

imum growth at k×B0 = 0 is suppressed. However, for the other two simulations

(Figures 5.2 and 5.3) that is not the case. Consequently, we see a lot of parallel in-

stability in Figure 5.3 and a much higher value of average growth rate for kaw and

ros datasets compared to 149p6 (see Figure 7.5 and associated discussion). However,

despite not being suppressed in the parallel direction, parallel instabilities in Figure 5.2

remain relatively sparse because of very low value of β‖p (see Table 5.1). Compara-

tively Figure 5.3 shows much less sparsity as a consequence of high value of Rp over
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Figure 5.3: Colorplot of (top row, left to right) β‖p, Rp and Jz for ros dataset. Panel (d) and
(e) (bottom row) show the spatial distribution of γmax for parallel and oblique propagation
respectively corresponding to first two panels.
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an extended region of the simulation box.

5.4.2 Spacecraft Observations

Figure 5.4 and Figure 5.5 show a typical portion of the time series data from

two spacecraft: MMS and Wind. The panels, from top to bottom show Rp, β‖p, |J| and

maximum growth rates (γmax) for parallel and oblique instabilities respectively for both

the spacecraft. Time intervals were chosen so that the figures showed approximately

equal numbers of correlation time scales in the magnetosheath and solar wind at 1 au.

For magnetosheath 10 minute corresponds to roughly 20 τcr (Le et al., 1993; Gutynska

et al., 2008) whereas for solar wind which has a correlation time length of about 55

minutes the interval of 24 hours corresponds to about 25 times τcr (Matthaeus &

Goldstein, 1982; Wicks et al., 2010).

Both the Figures 5.4 and 5.5 show an intermittent distribution of instability

growth rates, though in case of Wind since the variation in β‖p is much smaller than

that observed in magnetosheath the number of unstable points are significantly smaller.

Table 5.1 lists out the variation in these parameters for all the different cases discussed

so far.

Comparing Figure 5.1 and Figure 5.4 we see that a larger fraction the MMS

data (30%) are unstable versus grid points from the simulation (0.8%), with γmax

values above the cut-off (10−5 Ωp). This discrepancy arises in part because MMS data

have much higher values of β‖p than the simulation (median values of 4.5 and 1.2,

respectively). Furthermore, Servidio et al. (2015) found that, for a given value of β‖p,

simulations of the turbulence type, like in the present 2.5D cases, generally admit less

extreme temperature-anisotropy than are seen in space observations, because typical

simulations are of modest size resulting in modest Reynolds number and lack large

scale coherent driving.

The time series for MMS observation (Figure 5.4) exhibits intermittent structure

in the distribution of growth rates that are similar to what we see in Panels (d) and

(e) of Figure 5.1 for simulation. Figure 5.6, which shows the comparison of the time
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period. The top panel shows the distribution for a 1-minute long flight through the simulation
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26. Figure reproduced from Qudsi et al. (2020a) with the permission of AIP Publishing (see
Appendix D).

https://publishing.aip.org/
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Table 5.1: Average values of parameters for different datasets

Name Type of data
〈
β‖p
〉

〈Rp〉 nγ/N (%)

149p6 Simulation 0.64 0.83 6.82

kaw Simulation 0.61 0.89 0.90

ros Simulation 0.84 1.04 16.39

mms Spacecraft
Observation
(Magnetosheath)

4.29 1.04 24.51

wnd Spacecraft
Observation
(Solar Wind)

0.69 0.50 14.22

series of simulation and MMS data for a 1 minute period, shows that qualitatively they

have similar distribution. Time series for the simulation was computed by flying a

virtual spacecraft, travelling at the plasma bulk speed (238 km/s, same speed as that

of plasma during MMS observation), through the entire box at an angle of 75 degrees

with respect to x-direction.

In Figure 5.4 the points of instabilities (γmax > 0) are concentrated together,

spreading over a small time interval lasting typically a few seconds (4-8 seconds) with

sharp peaks. Though in this study we did not quantify the length scale of all the peaks,

we found that typically they are spread over a length scale of ∼ 20− 40 di, where di is

the ion-inertial length and the length scale was calculated using the flow speed of the

plasma and the duration of the peak.



5-13

5.5 Discussions

In recent years, two different perspectives have been widely used to explain the

behavior of the solar wind, magnetosheath, and similar space plasmas. In the first

picture, the linear theory of plasma instability, at high β‖p, for extreme Rp, different

instability thresholds become active, thereby confining the plasma population to lower

values of Rp (Gary et al., 2001; Kasper et al., 2002; Hellinger et al., 2006; Matteini

et al., 2007; Klein et al., 2018). In the second, turbulence generates sharp gradients

in the plasma that produce temperature anisotropy (Osman et al., 2011; Greco et al.,

2012; Valentini et al., 2014; Parashar & Matthaeus, 2016).

These two theories have been non-reconcilable because of the basic underlying

assumption. The linear theory of plasma instability assumes a homogeneous back-

ground magnetic field whereas turbulence relies on large fluctuations in the field. It was

hitherto unclear if these two seemingly disparate processes–microinstabilities and tur-

bulence–are connected in any way in configuration space. The apparent contradiction—

homogeneity against intermittent inhomogeneity—between the two interpretations poses

a question of fundamental importance in the study of space plasmas specifically and

collisionless plasmas in general: How can an inhomogeneous phenomenon such as tur-

bulence be consistent with temperature-anisotropy constraints derived from linear the-

ory of homogeneous plasmas? Our simulations show that the turbulence indeed heats

the plasma anisotropically, making it more susceptible to instability. But the simu-

lation also show that these anisotropies are strongly localized; furthermore the 2.5-D

character of the simulation with a strong background magnetic field out of the simula-

tion plane acts against the growth of the proton cyclotron and parallel proton firehose

microinstabilities. Clearly, further studies are necessary to resolve this apparent con-

tradiction.

Although there is no discussion of the consequences of electron anisotropies here,

it should be noted that both simulations and magnetosheath observations (Gary et al.,

2005) have shown that electron temperature anisotropies in collisionless plasmas can

drive whistler instabilities which, in turn, scatter the electrons to establish a constraint
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on the anisotropy of that species (Gary & Wang, 1996), in full analogy with the case

of ion instabilities and anisotropy constraints discussed here.

In Figures 5.1 to 5.3 the regions of significant growth rates are close to the

regions of peak current values. This suggests that current sheets are producing the

extreme temperature-ansiotropies that ultimately drive the instabilities. Note, though,

that the high-γmax regions and the high-Jz regions do not perfectly overlap: they

tend to be adjacent to each other rather than co-located, as seen by Greco et al.

(2012). Thus, traditional methods of correlation calculation would be inadequate to

quantify the relationship between these two structures. Instead, an analysis using

cross correlations of these quantities (see, e.g., Parashar & Matthaeus, 2016) or joint

distributions (see, e.g., Yang et al., 2017) to explore the causal connection between

instabilities and turbulence-generated current sheets would be the next step forward.

In this study we found an explicit connection between intermittency in plasma

turbulence and indication of the local enhancement of linear instability growth rates.

Intermittency is clearly influential in the interpretation of observations, while its the-

oretical importance derives from its potential connection to the nature and statis-

tics of dissipation Kolmogorov (1962); Karimabadi et al. (2013); Wan et al. (2016);

Howes (2015); Matthaeus et al. (2015). The connection we have found here—that lin-

ear instability growth rates computed from (admittedly oversimplified) homogeneous

plasma theory, also occur in intermittent bursts—adds to this emerging understanding

of plasma dissipation. Previous studies found that pathways, such as inertial range

transfer (Sorriso-Valvo et al., 2019), electromagnetic work (Wan et al., 2012), electron

energization (Karimabadi et al., 2013), and pressure-strain interactions (Yang et al.,

2017) concentrate in small sub-volumes of plasma turbulence. Dynamical processes

that lead to dissipation such as magnetic reconnection, also occur in spatially localized

regions (Drake et al., 2008). Along with these we now have observed strong indica-

tion that velocity-space driven phenomena (Servidio et al., 2012; Greco et al., 2012;

Schekochihin et al., 2016; Servidio et al., 2015) also occur in similar highly localized
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sub-volumes. Observation and study of wave signatures which propagate in both di-

rections and thus implying proximity to the generation region may provide a more

conclusive evidence. The nature of the spatial or regional correlations of these kinetic

processes to the surrounding dynamical processes that drive them largely remains to

be explored.
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Chapter 6

TEMPERATURE ENHANCEMENT ALONG INTERMITTENT
STRUCTURES

6.1 Overview

The solar wind proton temperature at 1 au has been found to be correlated with

small-scale intermittent magnetic structures, i.e., regions with enhanced temperature

are associated with coherent structures such as current sheets. Using Parker Solar

Probe data from the first encounter, we study this association using measurements

of radial proton temperature, employing the Partial Variance of Increments (PVI)

technique to identify intermittent magnetic structures. We observe that the probability

density functions of high-PVI events have higher median temperatures than those with

lower PVI, The regions in space where PVI peaks were also locations that had enhanced

temperatures when compared with similar regions suggesting a heating mechanism in

the young solar wind that is associated with intermittency developed by a nonlinear

turbulent cascade in the immediate vicinity. We also look into magnetosheath ion

temperature using MMS and report on the findings.1

6.2 Introduction

As discussed in Section 1.3, solar wind is a stream of charged and highly mag-

netized plasma streaming at supersonic speed originating from the Sun. Solar wind is

primarily composed of ionized hydrogen (Marsch et al., 1982; Kasper et al., 2012) with

varying amount of helium nucleus (Maruca, 2012b) and minor heavier ions.

Despite decades of observation, the exact process that originally heats and accel-

erates solar wind plasma remain unknown, but several candidates have been proposed.

1 Part of this study was published in Qudsi et al. (2020b).
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Turbulence cascade transfers energy from large to small scales (see Section 3.2 for more

details), which can ultimately lead to dissipation and heating (Velli et al., 1989; Velli,

1993; Matthaeus et al., 1999; Dmitruk et al., 2002; Cranmer & van Ballegooijen, 2005;

Cranmer et al., 2007; Cranmer & van Ballegooijen, 2012; Cranmer, 2014; Verdini &

Velli, 2007; Verdini et al., 2009a,b; Chandran & Hollweg, 2009; Perez & Chandran,

2013; Lionello et al., 2014). Current sheets, generated by cascading vortices, can also

lead to localized heating (Parashar et al., 2009; Osman et al., 2011, 2012a,b; Gingell

et al., 2015). Wave particle interactions — including, e.g., microinstabilities, Lan-

dau damping, and ion-cyclotron resonance — can likewise result in significant changes

to the particles’ phase-space distribution (Gary, 1993; Sahraoui et al., 2010; Klein &

Howes, 2015). Though there are several linear and non-linear mechanisms which heats

the space plasma, here we focused on one such mechanism, coherent structures: fea-

tures in the plasma that are persistent through time, concentrated in space, or both

(Greco et al., 2018). As discussed in Section 3.2.3 such structures can be produced by

turbulent cascade (Osman et al., 2012b) and are also associated with current sheets

(Yordanova et al., 2016). Osman et al. (2011, 2012b) analyzed in-situ observations and

of near-Earth solar wind and found clear indications that coherent structures correlate

with local enhancements in temperature.

So far most of the studies have been done using either numerical simulation data

or solar wind data at 1 au. However, plasma conditions are a lot different at 1 au from

those very close to the Sun, say 0.2 au. Magnetic field near 0.2 au is ∼ 70 nT compared

to ∼ 5 nT at 1 au. Plasma at 0.2 au is also much denser and hotter (∼ 200 /cm−3 and

∼ 106 K compared to ∼ 5 /cm−3 and ∼ 104 K respectively) (Kasper et al., 2019). And

even though solar wind is mostly collisionless, plasma at 1 au has gone through more

processing compared to the young solar wind (Verscharen et al., 2019, §3.3 & references

therein). The recently launched Parker Solar Probe (PSP) provides an unprecedented

opportunity to study the nascent solar wind in great detail.

In this study, we revisit the techniques of Osman et al. (2011, 2012b), and, by

applying them to observations from Parker Solar Probe (PSP), explore the relationship

https://www.nasa.gov/content/goddard/parker-solar-probe
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between plasma structures and heating in nascent solar wind plasma. We also look

into the heating of terrestrial magnetosheath plasma using data from MMS. Section 6.3

provides the background on such structures and introduces the reader to the physics of

technique employed in data analysis which is described in Section 6.4. In Section 6.5

we present the results and discuss its implication. Section 6.6 summarizes the results

along with a conclusion and potential future works.

6.3 Background

Some recent studies, both observational and numerical, have shown that in-

termittent structures are correlated with the regions of enhanced temperature in the

plasma (Osman et al., 2012a, 2011; Greco et al., 2012) and understanding the mech-

anisms by which the turbulence heats the plasma may also help solve the coronal

heating problem (Osman et al., 2012b). This is a particularly attractive scenario espe-

cially given the ubiquity of the localized structures. Study performed on data from PIC

simulation by Wu et al. (2013) shows that the correlation between enhanced temper-

ature and coherent structures exists for sub ion inertial length (di). Further evidence

of this is provided by TenBarge & Howes (2013) for Gyrokinetic simulation, Parashar

et al. (2009); Wan et al. (2012); Karimabadi et al. (2013); Wan et al. (2015) for PIC and

S. Servidio & Veltri (2012); Servidio et al. (2015) for Vlasov simulations respectively.

Work done by Chasapis et al. (2015) and Yordanova et al. (2016) on from Cluster and

MMS data show similar results from observation vantage point.

In this study, we investigate these discontinuities in the magnetic field and

explore their association with local enhancements in ion temperature. As discussed

in Section 3.2.3 we use PVI (see Equation (3.9) for the expression of PVI) to identify

the discontinuities. Although these structures constitute only a small fraction of total

data set their contribution to the total internal energy per unit volume is high. This

emphasizes the importance of using the PVI technique for such studies. We also note

that an analogous examination of the association of PVI events with energetic particles

was carried out at 1 au, (Tessein et al., 2016).
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6.4 Data Selection and Methodology

We analyzed data from PSP’s first encounter with the Sun (October 31 to

November 11, 2018). The FIELDS fluxgate magnetometers provided measurements of

the local magnetic field at a rate of 64 samples/NYseconds. Radial proton tempera-

ture/thermal speed data was obtained from the Solar Probe Cup (SPC), part of the

Solar Wind Electron, Alpha and Proton suite (Kasper et al., 2016) (See Section 4.1.3 for

a more detailed discussion of PSP, SPC, FIELDS and the dataset used in this study).

The average speed of solar wind during the first encounter was around 350 km/s for

the most part and crossed 500 km/s only on the last day of the encounter. Thus, using

Taylor’s Hypothesis, 1 NYs corresponds to a length scale of 300 km.

For the calculation of PVI according to Equation (3.9), we used 64 NYHz data,

with a lag of 1 NYs, which is the native cadence of SPC (Kasper et al., 2016). The

ensemble averaging was done over 8 hours, which is several times the estimated corre-

lation time. In this study we used the correlation time computed in Parashar et al.

(2020). However there are few subtleties associated with this calculation, and Smith

et al. (2001); Isaacs et al. (2015); Krishna Jagarlamudi et al. (2019); Bandyopadhyay

et al. (2020a) offer more insights and discussion on this topic along with potential

issues in such determination. We also carried out the analysis for various different

averaging times (from 1 to 12 hours) and different lags (from 1 to 100 seconds) and

it was observed to have minimal affect on the outcome. Figure 6.1 plots the relative

changes in PVI for 6th of November, 2018 for these different inputs, and shows that the

value of computed PVI barely changes for different lags and averaging times, thereby

reaffirming the robustness of this method. Though changing the lag or averaging times

or both slightly changes the overall value of PVI, they remain highly correlated with

respect to each other over the entire interval. PVI time series was then resampled to

ion cadence of 1 NYHz in the way such that for each interval of 1 NYs, the maximum

value of PVI in that interval was chosen.

In this study we focused on the second half of the encounter, immediately after

PSP was at its perihelion. The second half of the encounter has very different properties



6-5

024 I
τ

=
4s
,∆

=
1H

τ
=

4s
,∆

=
6H

024 I

τ
=

4s
,∆

=
1H

τ
=

10
0s
,∆

=
1H

06
00

:0
0

06
00

:0
5

06
00

:1
0

06
00

:1
5

06
00

:2
0

06
00

:2
5

06
00

:3
0

06
00

:3
5

06
00

:4
0

T
im

e
(U

T
C

)

024 I

τ
=

4s
,∆

=
1H

τ
=

10
0s
,∆

=
6H

D
at

a
fo

r
6t
h

N
ov

em
b

er
,

20
18

F
ig

u
re

6
.1

:
C

om
p

ar
is

o
n

o
f

P
V

I
co

m
p

u
te

d
fo

r
P

S
P

fo
r

va
ri

ou
s

d
iff

er
en

t
se

t
of

la
g

an
d

av
er

ag
in

g
ti

m
e.

T
h

ou
gh

ch
an

gi
n

g
th

e
la

g
or

av
er

a
gi

n
g

ti
m

es
o
r

b
ot

h
sl

ig
h
tl

y
ch

a
n

ge
s

th
e

ov
er

al
l

va
lu

e
of

P
V

I,
th

ey
re

m
ai

n
h

ig
h

ly
co

rr
el

at
ed

w
it

h
re

sp
ec

t
to

ea
ch

ot
h
er

ov
er

ti
m

e.



6-6

compared to the first half. A greater number of energetic particles were observed

(McComas et al., 2019), the solar wind speed was comparatively higher (Kasper et al.,

2019), and there were many more switchbacks or polarity reversal of magnetic fields

(Bale et al., 2019). Bandyopadhyay et al. (2020a) observed enhanced local energy

transfer, which points towards a more turbulent period in general, and thus a suitable

environment for PVI study.

For MMS analysis, we used the same data set as reported in Sections 4.1.2

and 5.3.2.

6.5 Results

Figure 6.2 shows the joint histogram of radial proton-temperature and PVI for

the first encounter of PSP. Increasing PVI color contours have an upwards trend, as

we see temperature distribution showing a positive slope with increase in value of PVI.

The positive correlation between temperature and PVI suggest some kind of heating in

the regions with high PVI. We then conditionally sampled radial proton temperature.

Conditionally sampled means that we arrange the data by increasing value of PVI

and then divide all the data points in 6 bins such that each bin has equal number of

points. We then calculate the temperature distribution within each bin which is shown

in Figure 6.3.

As PVI increases, the probability density increases for the higher temperature

and decreases for the lower temperature which is opposite of what we see at the low

temperatures where probability density is highest for the lowest PVI. Median tem-

perature, shown by vertical lines in Figure 6.3, for each of the distribution increases

implying presence of stronger and stronger heating as we go to higher and more ex-

treme values of PVI. For PVI < 1, median value of the temperature is 5.32 × 105 K

whereas for PVI > 6, the median temperature increases to 1.01× 106 K. Osman et al.

(2011) observed similar increase in average temperature in their study of solar wind at

1 au. This is consistent with heating occurring in the regions with small scale coherent

structure in MHD turbulence.
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Figure 6.2: Joint histogram of radial proton-temperature and PVI for the second half of first
encounter on a log-log scale. There is an upward trend between PVI and temperature as
the deep blue region in the plot tilts upwards showing an increase of temperature as PVI
increases. Figure reproduced from Qudsi et al. (2020b) with the permission of AIP Publishing
(see Appendix D).

https://publishing.aip.org/
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Figure 6.3: PDFs for the radial proton-temperature for the second half of first encounter.
Each PDF corresponds to a different PVI range such that each PVI bin has equal number
of data points. The probability density increases with increase in temperature for high PVI
events and peaks at comparatively higher value of temperature, whereas it decreases for
low PVI PDF. Vertical lines show the median temperature for each of the PDF plot. Figure
reproduced from Qudsi et al. (2020b) with the permission of AIP Publishing (see Appendix D).

https://publishing.aip.org/
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Figure 6.4: PDFs for the total proton-temperature for 40 minutes burst observation from
MMS. Each PDF corresponds to a different PVI range such that each PVI bin has equal
number of data points. The probability density increases with increase in temperature for
high PVI whereas it decreases for low PVI PDF. Vertical lines show the median temperature
for each of the PDF plot.
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Though distribution of total proton temperature from magnetosheath shows

similar trend in the median temperature of each bin as seen in Figure 6.3, the enhance-

ment in temperature is comparatively smaller. The median temperature corresponding

to three bins shown in Figure 6.3 are 2.56×106 K, 2.66×106 K and 2.77×106 K, which

is barely an increment. However, this is reflective of two features of magnetosheath

temperature and PVI compared to that of nascent solar wind. The radial temperature

of solar wind varies over more than an order of magnitude whereas for magnetosheath

it is less than half an order. Also, comparatively, solar wind has much higher values

of PVI than that of magnetosheath, mean value of 1.69 versus 0.78. There are other

factors to be considered as well. Short interval of observation which results in smaller

amount of data could be another contributing factor. Also, in the case that fluctuation

event lasts longer than the interval length, we won’t detect any enhancement in the

observed temperature. Though we did not see a conclusive evidence of temperature

enhancement for ions, it is worth noting that Chasapis et al. (2018) did observe it for

electrons. A comparative statistical study of PVI for datasets of different length of

observation time will can help in quantifying how prominent is the effect of duration

of observations on the value of computed PVI.

In order to further demonstrate the relationship between PVI and enhanced

temperature for PSP, we looked at the temperature at the point of high PVI event and

its immediate surrounding in space using the methodology described by Osman et al.

(2012b). We compute the mean value of temperature at the point of the PVI event

and for points near the PVI events separated from it by up to one correlation length.

Formally, these averages may be expressed as:

T̃p(δt, θ1, θ2) = 〈Tp(tI + δt)|θ1 ≤ I(tI) < θ2〉 (6.1)

where T̃p is the conditionally averaged temperature for all the events, δt is the time

difference relative to the position of PVI events, tI is the time of PVI events between

the threshold θ1 and θ2. In Equation (6.1), for a given threshold of PVI, we record

the temperature at each point where PVI satisfies the expression θ1 ≤ I(tI) < θ2.
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Figure 6.5: Figure shows conditional average temperature for different PVI thresholds at the
point of a PVI event. T̃p peaks at the instant of PVI event and continues to have elevated
temperature in its vicinity within the correlation time scale. Red curve, corresponding to
lowest PVI shows a dip suggesting no heating when the magnetic field is very smooth. The
error bars are smaller than the symbols and thus not easily visible in the figure. Figure
reproduced from Qudsi et al. (2020b) with the permission of AIP Publishing (see Appendix D).

We then record the temperature around that point, moving up to 1 correlation length

away from the point of PVI event. Once we have the temperature at all such points,

we take the average of all temperatures which were at same distance from the event.

Figure 6.5 shows the plot of T̃p for various thresholds for the second half of the

encounter. Not only do we observe enhanced temperature at the point of high PVI

events, suggesting localized heating at those points, we also see that T̃p for a higher

PVI event is consistently higher than nearby points separated by up to a correlation

length. This implies that the points nearby an identified PVI event have an elevated

https://publishing.aip.org/
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average temperature, continuously approaching the elevated average temperature found

at the PVI event itself. Some of this effect may be due to clustering of PVI events

(see Chhiber et al. (2020)). Another point worth noting in Figure 6.5 is the valley in

the temperature profile for small PVI. This is the region where background magnetic

field is smooth and it appears that in such regions, the temperature is lower than the

temperature of plasma in its immediate surrounding, which is concurrent with the fact

that in those places there is no turbulence heating. Osman et al. (2012b) found similar

result in their study at 1 au. However, in our study we find a significant dip compared

to the dip reported in Osman et al. (2012b), ∼ 105 K compared to ∼ 2× 103 K.

6.6 Discussions

In this study, we used in-situ observations from PSP’s first encounter with the

Sun and the magnetosheath data from MMS to explore the association of proton heat-

ing with coherent magnetic structures in space plasmas. We identified enhancements

of PVI (Greco et al., 2008) as indicative of the presence of such a structure (Osman

et al., 2011, 2012b). We observed that the joint histogram of PVI and proton radial

temperature, for solar wind, shows positive trend as shown in Figure 6.2. We also

observed that the PDF of data, as shown in Figures 6.3 and 6.4, with higher PVI has

higher median temperature compared to those with lower PVI for both solar wind and

terrestrial magnetosheath. These observations strongly supports the theory that the

solar wind in those regions are heated by coherent structures which are generated by

plasma turbulence. Though owing to certain characteristics of magnetosheath data, a

more in-depth analysis is required to draw any final conclusion.

The present results demonstrate both the shifting of the PDF of temperature

towards higher values with increasing PVI condition, (in Figure 6.3) and the spa-

tial/temporal localization of the temperature enhancement near PVI events (in Fig-

ure 6.5). Both of these are fully consistent with findings in the two papers that examine

these effects (Osman et al. (2011, 2012a), respectively). It is interesting that these ef-

fects are present clearly in the PSP first orbit where turbulence is presumably younger
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and possibly less well developed than it is at 1 au. It is possible that the temperature

differential between low and high PVI is somewhat less in the PSP data than in the

ACE data at 1 au (Osman et al., 2011), but additional samples by PSP will be needed

to draw any firm conclusion of this type.

In order to further demonstrate this association we looked at the conditionally

average temperatures at the point of a high PVI event and in its immediate surrounding

up to 1 correlation length. We observed that not only the point of event has the highest

temperature, its vicinity shows enhanced temperature compared to lower PVI events.

The local maxima of these temperature profiles are most prominent for higher PVI

events suggesting stronger heating. The plateau region of each thresholds are distinct,

and for higher threshold they maintain a high value suggesting clustering of PVI events

around a large discontinuity. For very smooth magnetic field we see a dip in the average

temperature at that point. Osman et al. (2012b) found similar behavior in their study

of solar wind at 1 au, though neither the heating nor the dip in temperature for small

PVI that they reported in their study was as high as what we observed in our study.

This suggests that either coherent structures are more efficient in heating the plasma

near the Sun compared to 1 au or we have a lot more such structures as we move closer

to the Sun. Since these coherent structures are generated by plasma turbulence, these

observations suggest that non-linear turbulence cascade play a crucial role in heating

the nascent solar wind. Given the ubiquitous nature of such structures, this process

can help explain the coronal heating or be at least a part of the explanation.

A significant limitation of this study was unavailability of temperature-anisotropy

data. The temperature measures we used were not the scalar temperature but rather

the radial temperature, for which reason we limited our observations to period of

nearly-radial magnetic field (see Sections 4.1.3 and 6.4). Once reliable ion temperature-

anisotropy data are available, the present study could be revisited to explore both scalar

and anisotropic heating. Theoretical studies have found that turbulent cascade can gen-

erate strong temperature anisotropy near coherent structures (Parashar & Matthaeus,

2016).
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A careful inspection of Figure 6.5 reveals a very slight asymmetry in the shape

of the temperature profile right before and after the PVI event. The phenomenon was

also noted in 1 au solar wind by (Osman et al., 2012b). The cause and significance

of this asymmetry remain unclear, but it may it suggests a connection between local

heating and large-scale processes such as heat flux.
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Chapter 7

INTERPLAY BETWEEN LINEAR AND NON-LINEAR PROCESSES

7.1 Overview

In the last two chapters, Chapter 4 and Chapter 5, we discussed two different

processes which result in heating or temperature enhancements in the space plasmas.

As we found in Chapter 5 two processes occur simultaneously in both space and time

and are entangled together at different scales. Consequently, there is an implied com-

petition between the two processes to determine which one dominates given a set of

conditions in the space plasmas. In this chapter we look at the two processes simulta-

neously to see the result of this competition as well as the dynamics between the two.

We compare the time scales of two processes to see which one dominates and report

our results in this chapter.1

7.2 Introduction

Solar wind is weakly collisional. The VDFs of solar wind ions exhibit non-

Maxwellian features which introduce significant free energy in the system (see Chap-

ter 2). The presence of additional features like secondary beam population2 (Verscharen

et al., 2019, and references therein) signifies additional departure from the local ther-

modynamic equilibrium and thus provide one form of free energy. All this often results

in significant departure from temperature isotropy (T⊥ = T‖), which leads to the de-

velopment of kinetic microinstabilities fueled by the free energy in the system. As

1 Part of this study was published in Bandyopadhyay et al. (2020b) and Gary et al.
(2020).

2 A field aligned secondary population of species which moves at a higher speed com-
pared to the core population along the magnetic field lines.
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discussed in Chapters 2 and 5, these instabilities then act to make the system more

isotropic by scattering of particles in phase space.

Turbulence is another process by which the opposite affect can be achieved,

enhancement in anisotropy of the plasma, and because of its ubiquitous nature, it is

expected to play important role in the dynamics of the plasmas. Thus at any point

these two processes are either feeding off of each other or are competing in the system.

Recent studies have shown that coherent structures (e.g., current sheets) generated by

solar wind turbulence can generate extreme anisotropies (Greco et al., 2012; Servidio

et al., 2015; Karimabadi et al., 2013) which results in development of linear growth rates

as predicted by the Vlasov dispersion equation (Qudsi et al., 2020a). Other studies

(Karimabadi et al., 2013; Matthaeus et al., 2015) have shown that local instabilities

may arise occasionally in the presence of shear driven turbulence. Bale et al. (2009)

found enhancements in magnetic fluctuations in regions of solar wind plasma that are

susceptible to the development of one or more microinstabilities. Osman et al. (2013)

showed the presence of high cascade rate in the same regions, suggesting that these

two, linear and non-linear, processes exist in the same space.

However, since these two processes compete with each another to influence the

plasma, it remain unclear as of now which one dominates and drive the large scale

phenomenon. We thus decided to study the time scales at which the two processes

work and compare them in different types of plasmas. For kinetic microinstabilities

we study the linear growth rates (see Section 2.2.2) whereas for time scales associated

with turbulence we look at the non-linear frequency and time scales as computed in

Section 3.3. We carry out this analysis for six different datasets: 3 from simulation and

3 from in-situ measurement of space plasmas (see Chapter 4 and Table 4.2 for details

of data and some other relevant quantities).

7.3 Data Selection and Methodology

Since we are to compare the two time scales, we look at the linear and non-linear

rates present in the plasma locally. For the linear growth rates, we consider all the four
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growth rates3 which might be active at any point and compute the maximum of the 4

rates, where each growth rate was computed by the method described in Sections 2.2.3

and 4.2. Equation (7.1) puts this succinctly in the form of an equation.

Γmax = max
(
γmax,cyclotron, γmax,mirror, γmax,‖firehose, γmax,∦firehose

)
(7.1)

For the non-linear rate, we computed the local nonlinear frequency (ωnl) at any position

r for a lag length scale of ` as :

ωnl ∼ δbl/` (7.2)

Where δb` is the change in the longitudinal magnetic field and is given by :

δb` =
∣∣∣ˆ̀· [b(r + `)− b(r)]

∣∣∣ , (7.3)

Where b is the total magnetic field expresses in local Alfvén speed units (see Sec-

tion 3.3). As mentioned in Section 4.2.3 for all cases except the 3-D dataset, since the

goal was to carefully evaluate the nonlinear frequency at the scale of the fastest growing

mode, the value of ` is given by 1/kmax, where kmax is the wave number corresponding

to Γmax as computed in Equation (7.1). Since for marginally unstable plasma, kmax is

typically of the same order as the ion inertial length (di) (Maruca, 2012a, Figures 6.6

to 6.9), for the case of 3-D simulation, because of some computation limitation, we set

` = di.

7.4 Results

Figure 7.1 shows the comparison between the two time scales (linear and non-

linear) for three different simulations (see Chapter 4 for more detail). The first panel

of each row shows the maximum value of linear growth rates (Γmax) as defined by

Equation (7.1). The second panel shows the non-linear growth rates (ωnl) computed

using Equation (7.2). Though ωnl is largely uniform over the simulation box, heightened

3 Under the assumption of no secondary beam populations and an isotropic electron
population.
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values of it lie close to the regions with high current density and/or where temperature

anisotropy has extreme values (see Figures 5.1 to 5.3). The third panel shows the

ratio between the two growth rates. This ratio is only computed for regions where

the condition Γmax > 10−5Ωcp is satisfied, consequently there are very few points of

comparison compared to the total number of points inside the box (see Table 7.1). The

third panel shows that there are very few points where Γmax > ωnl, which implies the

dominance of non-linear phenomena over the linear one for all three different kinds of

simulation conditions. This means that it takes longer time for the linear instability to

affect the system than the eddy turnover time and thus it will be the nonlinear processes

and not linear instability which will dictate the evolution of the system. Counting

the number of data points where both the conditions (Γmax > 0 and Γmax/ωnl > 1)

were satisfied, we found that the conditions were true only for 0.019, 0.053 and 0.59

percentages of cases for 149p6, kaw and ros datasets respectively.

Figures 7.2 to 7.4 show the time series equivalent of Figure 7.1 for three differ-

ent spacecraft (MMS, Wind and PSP respectively), located in different space plasmas:

Earth’s magnetosheath, 1 au solar wind, and near-Sun solar wind (∼ 0.2 au) (see Sec-

tion 1.3 and Chapter 4). Similar to Figure 7.1, for each of these figure the first panel

shows the time series for Γmax, the second shows that for ωnl, and the third shows ratio

of the two. The dashed red line in each third panel demarcates Γmax = ωnl. Though

in all three sets of observations, fraction of data with Γmax > ωnl is higher than in the

simulations (see Table 7.1), it remains well below 50%. Though Klein et al. (2018)

used a different method to compute the condition of plasma instability and a different

condition for calculation of ωnl, they found a similar result for solar wind at 1 au.

Figure 7.5 shows the kernel density estimate (KDE) 4 plot for each of the afore-

mentioned six datasets generated using seaborn package in Python. As expected, in

all the cases the core of KDE is below Γmax = ωnl line (dashed red line). Though for

simulation dataset 149p6 the core of the distribution is centered between Γmax = 10−4

4 KDE is a non-parametric method of probability density estimation of a random
variable.
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Table 7.1: Number of points in each datasets, and where we have active linear insta-
bility present (Γmax > 10−5 Ωcp) and where Γmax/ωnl > 1 with associated percentages
in parenthesis

Datasets
Number of

total data points
points where
Γmax > 10−5 Ωcp (%)

points where
Γmax/ωnl > 1 (%)

149p6 16,777,216 1,144,615 (6.82) 3,347 (0.019)

kaw 4,194,304 37,560 (0.90) 2,227 (0.053)

ros 134,217,728 22,001,875 (16.39) 794,220 (0.59)

mms 15,857 3,887 (24.51) 174 (1.10)

wnd 1,316,621 187,338 (14.22) 2,7857 (2.11)

psp 95,034 5,347 (5.62) 1,483 (1.56)

and Γmax = 10−3, for both kaw and ros datasets centroid of KDE is more than an

order of magnitude higher at Γmax = 10−2. This can be attributed to the fact that

in both of these simulations the background magnetic field (B0) in the plane of the

fluctuations is non-zero, by design for the kaw dataset and for ros dataset because

there are fluctuations in all 3 directions. This results in the case that k‖ 6= 0 for

these two simulations, whereas for 149p6 simulation since there is no spatial varia-

tion in the direction parallel to B0, wave vector components parallel to B0 are zero.

This results in limited application of both Landau (fluctuations of zero frequency) and

cyclotron resonance (fluctuations with nth species cyclotron frequencies)(Gary et al.,

2020). This makes both the resonances independent of particle velocities and thus
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the particles are constrained to fluid-like behavior. Because of this, 149p6 simulation

fails to account for velocity dependent wave-particle interactions which may represent

critical elements of turbulent dissipation at wavelengths of the order of or shorter than

di(Gary et al., 2020). Another interesting feature of these KDE plots is how much

closer to the Γmax = ωnl line the centroid of the distribution is for the PSP data com-

pared to other spacecraft data, implying substantially more competition between the

linear and non-linear processes closer to the Sun. Klein et al. (2021) observed similar

enhancements in the linear growth rates for plasma closer to the Sun. Further analysis

is needed, though, since the available PSP data were from such a short time interval

(see Section 4.1.3), and temperature anisotropy was computed using an entirely novel

technique (Huang et al., 2020). As was remarked in Section 6.6 close to the Sun the

turbulence is quite young and not developed enough implying presence of weaker non-

linear instabilities. Presence of faster linear growth rates closer to the Sun would also

explain the stronger-than-expected plasma heating as evident in Figure 6.5. Another

factor could also be the proximity of plasma to the Alfvén critical region and thus

it exhibits wave like bahaviour which are a lot stronger than those at 1 au or in the

terrestrial magnetosheath.

Each of the datasets shows that non-linear time scales are in general faster

than linear timescales. This would imply that in most cases linear processes never

have enough time to act on the plasma in a way that is significant enough to affect

the dynamics or the statistical behaviour of whole plasma. However, as discussed in

Section 2.3 as well as in Section 5.5, linear theory is very efficient at predicting the

boundaries of (Rp, β‖p) plots which implies that linear growth rates work well enough

to regulate extreme values of Rp at high β‖p. We thus look at the distribution of the

two frequencies (Γmax and ωnl) and their ratio for the three spacecraft datasets (mms,

wnd and psp) on the (Rp, β‖p) plane.

Figures 7.6 to 7.8 show the distribution of data on a (Rp, β‖p)-plot. The first

panel of each figure show the number of data points in each bin, the second panel shows

the average value of Γmax in each bin, ωnl is shown in the third panel and their ratio
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in the fourth panel. As expected the region along the edges which is most susceptible

to instability is where most of the instability is present. What is interesting to note is

the distribution of Γmax/ωnl along the edges. For all the three spacecraft data, ratio

of the two frequencies is increasing as we move outside from the centroid (as seen in

the first panel) distribution. This is evident in all three cases, specially for the solar

wind at 1 au (Figure 7.7) and near the Sun (Figure 7.8) it appears that linear time

scales are a lot faster than their non-linear counterpart. Signifying that though in most

cases Γmax < ωnl, it is greater than ωnl where it needs to be (along the periphery of

(Rp, β‖p)-plots), and thus is quite efficient at limiting the exertion of plasma population

to high anisotropy regions at high β‖p.

7.5 Discussions

We investigated the competition between linear and non-linear time scales for

6 different datasets. We observed that non-linear processes arising because of tur-

bulence dominate linear ones overwhelmingly (Figures 7.1 to 7.4). This would imply

that the linear processes are of little consequence as far as dynamics and statistical

properties of a turbulent plasmas is concerned. Yet, in-situ observations of space plas-

mas present strong evidence that linear microinstabilities regulate ion temperature

anisotropy. Multiple studies of in-situ observations (Gary, 1991; Gary et al., 1994,

2001; Gary & Karimabadi, 2006; Kasper et al., 2002; Hellinger et al., 2006; Maruca

et al., 2011, 2012; Maruca et al., 2018), have found that the distribution of plasma

over the (Rp, β‖p) plane well restricted by thresholds predicted by linear Vlasov theory

one must conclude that linear theory works. Observations made in Figures 7.6 to 7.8

provide further evidence. We observed that though ωnl > Γmax for most part, along

the lines of threshold where microkinetic instabilities are most active, linear processes

disrupt the turbulence cascade and dominate. However, as we saw in Figure 7.6 even

when the two processes have comparable values along the edges, it still gave rise to ex-

pected (Rp, β‖p) plot (Maruca et al., 2018). Recent studies have shown that regions of

extreme temperature anisotropy are produced because of generation of sharp gradients
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by turbulence (Osman et al., 2011; Greco et al., 2012; Valentini et al., 2014; Parashar

& Matthaeus, 2016), and we know that kinetic microinstabilities are most active where

Rp deviates significantly from unity. Osman et al. (2013) showed that turbulence cas-

cade rates are highest along the edges as well. All this indicates a complicated interplay

between turbulent and microkinetic phenomena.

In this chapter we compared linear growth rates derived using linear dispersion

relation under the assumption of homogeneity of background fields. An ideal method

would involve computation of γ based on theory which takes such inhomogeneities as

are present in plasmas into account. Understanding the kind of turbulence present in

the system can further assist us in an accurate computation of ωnl. Since it is extremely

difficult to gauge the kind of turbulence present in a system without the knowledge of

magnetic structure a full 3-D image of magnetic field can help substantially. Though

development of linear theory based on inhomogeneities has been deferred to future

work, in Chapter 8 we discuss a probable future mission and proof of concept for

measuring full 3-D structure of magnetic field from kinetic to mesoscales at 1 au.
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Chapter 8

MAGNETIC FIELD TOPOLOGY RECONSTRUCTION USING
MACHINE LEARNING ALGORITHM

8.1 Overview

Machine learning, over the last decade has become increasingly relevant in data

and image analysis. Both, image reconstruction and data imputation, specifically in

a time series, have increasingly relied on machine learning techniques and algorithm

(Wang et al., 2018; Bertsimas et al., 2017). In this chapter we apply one such algo-

rithm/technique to a synthetically generated time series dataset of the magnetic field

derived from a fully kinetic 3-D simulation of space plasma. This work serves as a

proof of concept for a future mission consisting of multiple spacecraft that would map

out the topology of the solar-wind’s magnetic field.

Section 8.2 motivates the multi-spacecraft observation of space plasmas and the

reconstruction of 3-D magnetic field structure. Section 8.3 presents the current state of

the field. Synthetic data generation is discussed in Section 8.5 and Section 8.4 discusses

the methodology used in detail. Section 8.7 presents the results of the implemented

algorithm. The conclusion of the study is summarized in Section 8.8 along with some

discussion and suggestions of future works1.

8.2 Introduction

Over the last 7 decades in-situ observation of solar wind has been carried by

different spacecraft starting with Sputnik in 1957 and on going with the most recent

mission Solar Orbiter which was launched in 2020. Majority of such missions launched

1 Part of this study was published in Maruca et al. (2021).
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a single spacecraft. Observations from these missions have vastly improved and en-

hanced our understanding of solar wind and its dynamics, thanks to ever increasing,

more precise and detailed observations. However, single spacecraft missions cannot dif-

ferentiate between a temporal and spatial fluctuation. This also means we do not have

detailed information of the full 3-D structure of the interplanetary magnetic field. To

address this, a few missions have flown with 4 or 5 spacecraft (e.g., Cluster, THEMIS-

ARTEMIS, and MMS), and missions with even more spacecraft have been proposed

(Klein et al., 2019). Though work done by Fu et al. (2015) and Torbert et al. (2020)

using MMS data are promising, they are limited to a single scale. Methodology em-

ployed by Fu et al. (2015) also becomes inaccurate if the distance between spacecraft

is of the order of ion-inertial length (di). Given the multi-scale nature of solar wind

(Verscharen et al., 2019) we must have a system where we can study the magnetic

field by reconstructing it at multiple scales. So far no mission has succeeded in gen-

erating a full three dimensional image of the magnetic vector field in the solar wind,

mostly because of large number of spacecraft required to carry out such a task and at

various length scales. A full 3-D image would provide magnetic field vector at every

point within the area being imaged and thus will be able to trace the interplanetary

magnetic field lines. It will also get us information related to structure and topology,

which are extremely important for understanding turbulence and its evolution in space

plasmas, especially how energy is stored in and transported through the plasma.

Though an active field of research, not much work has been done in this from

the vantage point of machine learning. In this study we present a proof of concept of

magnetic field’s topology reconstruction using multi-point observation in a 3-D sim-

ulation box. For multi-point observation, we fly a constellation of virtual spacecraft

through a simulation box (see Section 8.5), and carry out the interpolation on observed

vector data in the 3-D space along its trajectory using Gaussian Processes Regression

in machine learning. The study also explores the number of spacecraft, the relative

separation between them, and their configuration required for resolving structures of

various scales.

http://www.esa.int/Science_Exploration/Space_Science/Cluster_overview2
https://www.nasa.gov/themis-and-artemis
https://www.nasa.gov/themis-and-artemis
https://www.nasa.gov/mission_pages/mms/overview/index.html


8-3

8.3 Background

Spacecraft make regular in-situ measurement as plasma convects over them.

Reconstructing the full 3-D topology of interplanetary magnetic field thus requires

interpolating the data from the finite set of spacecraft observations. Different inter-

polation techniques can be used to achieve this result. Since solar wind is multi-scale

in nature (Verscharen et al., 2019) we will need sufficiently large number of observa-

tions to reliably construct the magnetic field at various different scales. For a planar

configuration of a constellation of spacecraft where normal to the plane of orientation

is in parallel (or anti-parallel) to the solar wind direction, as employed in this study

(see Section 8.5 and Figure 8.1), we can make more observations in the parallel flow

direction by increasing the cadence of measuring instrument, whereas in the direction

perpendicular to the flow, same effect can be achieved by increasing the number of

spacecraft.

For interpolation between the observation points, because of the presence of

non-linear structures (see Chapter 5) and sharp discontinuities (see Chapter 6), linear

interpolation techniques might not be best suited. We thus turn to machine learning

algorithms in an effort to minimize the number of spacecraft needed and maximize

the feasibility of such a space mission. Several such machine learning methods for

the purpose of data imputation have been explored in literature (Lin & Tsai, 2019;

Bertsimas et al., 2017; Wang et al., 2018). As discussed in Lin & Tsai (2019), the best

solution or the most appropriate method depends largely on the domain of the problem.

What works for one kind of dataset might completely fail for a slightly different one,

as we will see in this study as well. For our purpose, we decided to explore GP and

develop an algorithm based on it. The rest of this section gives a brief description of

GP, some of its salient features, and its key advantages and disadvantages.

8.3.1 Gaussian Processes Regression

Gaussian Processes (GP) as a generic term means that a dataset with finite

number of observation is modelled as if it were a multivariate normal distribution
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(Gramacy, 2020). It is a probability distribution over possible functions that fit a given

finite dataset. Just as a Gaussian distribution is fully characterised by its mean (µ) and

covariance (Σ), a GP is completely defined by (1) a mean function m(x) indicating the

mean at any point of the input space and (2) a covariance function K(x, x′) that sets

the covariance between input pairs x and x′ (Rasmussen & Williams, 2006). These can

be written as:

m(x) = E[f(x)]

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))]
(8.1)

and Gaussian processes can be written as:

f(x) ∼ GP (m(x), k(x,x′)) (8.2)

The covariance matrices in Equation (8.1) can be computed using a predefined func-

tion, which are referred as kernels in GP. This sets a prior to the set of functions

which must be considered for a given dataset and the type of kernel chosen defines the

characteristics of this prior.

There are several standard kernels (see Section 8.4). For this study, we tried a

few which were available through one the Python packages and selected the one most

suitable for our dataset.

One of the advantages of using GP in this application is that it is non-parametric

and thus, doesn’t require a priory fit function to model the input data. It is particularly

relevant to our case since we do not have much information about the structure of the

solar wind. Rather than relying on fit function, GP look at every possible model and

probabilistically explore the space to find the most optimal one for a given dataset.

Naively, it will appear that there are infinite functions to be considered here since the

probabilistic approach used in GP considers all possible functions. In reality, this is not

the case since each function is assigned a prior and the infinite number of functions are

defined by their statistics, making the whole method a lot more manageable. Another

advantage of GP is its computational tractability (Rasmussen & Williams, 2006).
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Selection of an appropriate kernel, though important to the whole process is

not critical, as even if we choose a random kernel it often does a decent job of data

imputation. Recent development in Deep GP in fact do away with the issue of pre-

defining a kernel since it is designed to learn the kernel which works best for a given

dataset (Bui et al., 2016). Well calibrated predictive uncertainty estimates and ease

of generalization, for both regression and classification analyses, are other benefits of

using GP.

As with any method, there are some disadvantages associated with it. One of

the major drawback of GP is its computational cost. Since inversion of matrices is

required, which makes the method of O(n3), it is computationally very expensive to

run for large number of data points (n > 2000) (Gramacy, 2020).

8.4 Kernels in Gaussian Processes

For this study we implemented GP using SciKit Learn package available in

Python (Pedregosa et al., 2011). SciKit has a few default kernels implemented in the

package, we list out some of them here:

1. Constant Kernel (CK)

2. Radial-basis Function Kernel (RBF)

3. Matérn Kernel (MK)

4. Rational Quadratic Kernel (RQ)

5. Exponential-Sine-Squared Kernel (ESS)

For our study we used these five kernels either individually or in combination with each

other. We briefly discuss each of the aforementioned kernels here. A more in-depth

discussion of each kernel can be found in Rasmussen & Williams (2006) or on the SciKit

Learn web-page2.

2 https://scikit-learn.org/stable/modules/gaussian process.html#kernels-for-
gaussian-processes

https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/modules/gaussian_process.html#kernels-for-gaussian-processes
https://scikit-learn.org/stable/modules/gaussian_process.html#kernels-for-gaussian-processes
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1. Constant Kernel: By definition this is simply a constant number or a vector for

all points in the space. This is largely useful in combination with other kernels where

either modification of magnitude (Product kernel) or change of mean (Sum kernel) is

required. The kernel can be written as:

k(xi, xj) = constant value ∀ xi, xj (8.3)

2. Radial-basis Function kernel: The RBF kernel is also known as “squared expo-

nential kernel”. The kernel has one length parameter ‘l’ which can be set to either a

scalar or something which has same dimension as the input (xi). The length parameter

controls the smoothness of the kernel. The kernel is stationary, meaning its covariance

function is invariant under translation, and it is infinitely differentiable resulting in

smooth outputs. The kernel is given as follows:

k(xi, xj) = exp

(
−d(xi, xj)

2

2l2

)
(8.4)

where d(xi, xj) is the Euclidean distance between the two points.

3. Matérn Kernel: Matérn kernel is the generalized form of RBF with an additional

parameter ‘ν’ which controls the smoothness of the resulting function. As ν → ∞,

Matérn kernel approaches RBF. Generally since ‘ν’ is set to some finite value, the

resulting output may not be very smooth. However, it gives a mode to control the

smoothness of the output. The Matérn kernel is given as:

k(xi, xj) =
1

Γ(ν)2ν−1

(√
2ν

l
d(xi, xj)

)ν

Kν

(√
2ν

l
d(xi, xj)

)
(8.5)

where Kν(·) is a modified Bessel function and Γ(·) is the gamma function. For most

cases we set ‘nu’ to 3/2 or 5/2 for once or twice differentiability respectively.
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4. Rational Quadratic Kernel: The kernel is an infinite sum of RBF with vari-

ous length scales. Just like RBF, RQ has the ‘l’ parameter. It also has an additional

parameter ‘α’ which is the scale mixture parameter. The kernel can be written as:

k(xi, xj) = exp

(
−d(xi, xj)

2

2αl2

)−α
(8.6)

5. Exponential-Sine-Squared Kernel: The kernel has two parameters, length scale

‘l’ and periodicity ‘p’ consequently making it most suitable for modelling functions with

some kind of periodic nature. The kernel can be written as:

k(xi, xj) = exp

(
−2 sin2(πd(xi, xj)/p)

l2

)
(8.7)

For our purpose, we mostly used kernels in combination with each other, since

most kernels can be added or multiplied to others. After Using several kernels, we

observed that a combination of constant and Matérn kernels gave the best result for

circular configuration, as shown in Figure 8.1, whereas for grid-like distribution (see

Figure 8.2) of spacecraft we found that constant and RQ kernels gave the best result.

Thus, the final kernel used to obtain results reported in this study were:

• For a grid-like configuration,

kernel� = CK(2, (10−2, 102)) + CK(2, (10−2, 102)) · RQ(l = 2, α = 0.1) (8.8)

• For a circular configuration,

kernel u= CK(5, (10−2, 102)) + CK(5, (10−2, 102)) ·MK(l = [2, 2, 6], ν = 5/2)
(8.9)

Where the symbols have the same meaning as defined for Equations (8.3)

to (8.7).

8.5 Synthetic Data Generation

For implementing the GP as discussed in Section 8.3.1, we would need ob-

servation dataset from a constellation of spacecraft. However, since we do not have
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such a constellation we use the output from a fully kinetic 3-D simulation, ros (see

Section 4.2.3 for more details). This enables us to test the effect of various number of

spacecraft and their relative orientation and positioning on the quality of reconstructed

image. For the ease of computation we down-sampled the original data to have reso-

lution of 1 di in the xy-plane and ∼ 1/3 di along the z-axis. To generate synthetic data

from the simulation data, we flew constellations of different number of spacecraft (4

to 36) in different configurations through the simulation box. Figure 8.1 shows one

such configuration (radial and planar) for 24 spacecraft. Note that all 24 spacecraft

are in one plane and record the time series as plasma passes by at typical solar wind

speed (∼ 500 km/s). We simulate the observation at a cadence of ∼ 13 Hz which is

comparable to modern instruments (see Chapter 4). Under the assumption of Taylor’s

hypothesis (Taylor, 1938), which lets us convert from a time scale to length scale us-

ing the speed of the plasma, solar-wind speed corresponds to consecutive data points

separated by approximately 0.3 di along the z-axis. This spacing is small compared to

distance between spacecraft (2− 22 di) and thus reconstruction along z-axis is limited

by the cadence of observation, whereas along xy-plane the number of spacecraft limits

the resolution.

8.6 Methodology

Simulation box size is 41.9 di, and thus it takes the constellation roughly 10

seconds to cross the whole box and each spacecraft makes 128 measurement in one

flight. We use the synthetic time series data generated from the virtual spacecraft

trajectory to train our GP model (see Section 8.4 and Appendix C). If we have N

spacecraft in a given configuration and we have 128 observation along the z-axis. For

one configuration we get 128×N data points for each component of the magnetic field

to train our model. Once the training is complete, we feed in the coordinates of every

point inside the disk of size 28 di (a few di’s larger than the size of the constellation) for

all the different planes, a total of 128 planes. This means for any number of spacecraft

we must make predictions at ∼ 28×28×128 points. This implies that greater number



8-9

Figure 8.1: One of the many configuration of spacecraft for 24 spacecraft. The inner black
circles represent spacecraft at a distance of 2 di from the center whereas the outer ones are
at 11 di. The red dots are the spacecraft at 7 di from the center.
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of spacecraft in any given configuration will give us better result since it will increase

the amount of data used to train the model. However, as with any machine learning

algorithm, there is a limit to how well trained a given model can be no matter the

amount of input data. We discuss this in further detail in next section.

Once we have the time series data, we trained the specified model on the ob-

served data providing it one component at a time. Once the model is trained and the

parameters of the model are learned based on the training set, we provide the model

with all the locations in 3-D space where we need to find the value of magnetic field.

Appendix C gives the detail of implementation and also provide the code for the same.

8.7 Results

Figures 8.2 to 8.5 show one of the slice along xy-plane of the actual simulation

data in Panel (a) (down sampled to 1 di resolution) and the reconstructed field cor-

responding to different number of spacecraft employed (4 to 36, represented by the

black dots) for observation (Panels b to f). For these figures, as discussed in Sec-

tion 8.4 reconstructed field were generated using kernel as defined in Equation (8.8).

The configurations with 4 and 9 spacecraft poorly reproduce the original simulated

field. Only when we have at least 16 spacecraft some structure is captured. Only for a

constellation of 25 or more spacecraft does the reconstructed field closely resemble the

original field structure. Though there is slight improvement in how well the original

field is being captured when we from 25 to 36 spacecraft (as expected), whether this is

worth additional expense of adding 11 more spacecraft need further investigation and

a quantitative comparison.

Results from circular configurations of spacecraft, for which the kernel in Equa-

tion (8.9) was used, are shown in Figures 8.6 to 8.9. As discussed for the previous fig-

ures, Panel (a) shows the original data, whereas Panels (b) to (h) show reconstructed

field corresponding to different number of spacecraft. The spacecraft are distributed

around a common center such that irrespective of the number of spacecraft employed,

maximum distance between two spacecraft is always 22 di so that they all cover equal
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Figure 8.2: x-component of magnetic field from simulation (Panel a) and reconstructed field
corresponding to different number of spacecraft (Panels b to f)

volume of space in any given amount of time. As was the case for grid-like configura-

tion, reconstructed fields do not capture any meaningful structure for 4 or 8 spacecraft.

Some structure does show up for 16 spacecraft however it is only when we employ 24

or more spacecraft that we get the structure of the field which looks similar to the

original input (more on this later).

For 24 spacecraft, we also randomized the position of each spacecraft, such that

each spacecraft could be anywhere in a circle of radius 2 di from its starting position (see

Panel g). Reconstructed data, even for randomized position, continue to capture the

actual structure of the original field. This observation considerably lessens the burden

of having precisely defined orbits of each spacecraft. As long as individual spacecraft

can communicate with each other regarding their relative position, reconstruction is

not effected in a significant way.

Given that we have a large number of spacecraft, at least 24, for this observation,

a scenario might arise where one or more of them fail to function properly, either
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Figure 8.3: y-component of magnetic field from simulation (Panel a) and reconstructed field
corresponding to different number of spacecraft (Panels b to f)

because of partial or full failure of instruments or for any other conceivable reason. We

considered this scenario in the following way. We record the position of all spacecraft as

shown in Panel (g) of Figures 8.6 to 8.9 and randomly remove two spacecraft, as shown

in Panel (h) of the same figures. We then carry out GP on the modified data. Results

from such reconstruction are shown in Panel (h) of each figure. As one can see, though

the quality of reconstruction deteriorates a bit, compared to 24 spacecraft (Panel e)

it still manages to capture most of the structure present. These two observations

(randomized location of spacecraft and random failing of 2 out of 24 spacecraft) shows

the robustness of algorithm.

Based on the results we have shown so far, we thus conclude that if such an algo-

rithm were to be applied, we will need at least 24 spacecraft in different configuration.
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Figure 8.4: z-component of magnetic field from simulation (Panel a) and reconstructed field
corresponding to different number of spacecraft (Panels b to f)

8.8 Discussions

The unknown nature of turbulence in the solar wind has given rise to competing

theories to explain the structure and evolution of the interplanetary magnetic field and

how energy is transferred from one scale to another. Measurements from a single

spacecraft cannot differentiate between temporal and spatial fluctuations in the field

and thus cannot conclusively support or reject any one of these theories. Measurements

of the field’s complete 3-D morphology and topology will enable us to understand the

true nature of solar-wind turbulence. This study thus focused on determining the

baseline number of spacecraft required to produce 3-D images of the IMF from in-situ

magnetic field measurements.

Using fully kinetic 3-D PIC simulation data, we demonstrated magnetic field

topology reconstruction from synthetic time series in 3-D space using Gaussian Pro-

cesses, a machine learning algorithm. Our results indicate that 24 spacecraft would be

required for the satisfactory reconstruction of 3-D IMF structure. We also showed that
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Figure 8.5: Magnitude of magnetic field from simulation (Panel a) and reconstructed field
corresponding to different number of spacecraft (Panels b to f)
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Figure 8.6: x-component of the magnetic field from simulation (a) and various different
number for circular configuration of spacecraft (b to h)
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Figure 8.7: y-component of the magnetic field from simulation (a) and various different
number for circular configuration of spacecraft (b to h)
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Figure 8.8: z-component of the magnetic field from simulation (a) and various different
number for circular configuration of spacecraft (b to h)
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Figure 8.9: Total magnetic field from simulation (a) and various different number for circular
configuration of spacecraft (b to h)

precise control of spacecraft trajectory is not required for such a mission so long as the

spacecraft positions are known. A baseline of 24 spacecraft even allows for unfavorable

alignment of some spacecraft, though substantially fewer spacecraft (e.g., 16) fail to

produce consistently adequate IMF reconstructions.

Nevertheless, this study is still very much a work in progress and much needs

to be done before we can reach a final version of the algorithm. As stated in Sec-

tion 8.4, we applied GP to each component of the field individually, ignoring the other

two components. In reality the magnetic field components are not fully independent

since the magnetic field must be divergence-less. In principle, a kernel could be imple-

mented that would process all three components simultaneously and even enforce the

requirement of a divergence-less field (for a 2-D example of this, see Narcowich et al.,

2007; Wahlström et al., 2013). Alternatively a divergence cleaning algorithm could be

applied after the GP algorithm has run.

We are also investigating alternative machine learning techniques. For example

Deep GP (Bui et al., 2016) can generate the best kernel for a given dataset rather than

requiring the user to select one.
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More study is also required of how the arrangement of a given number of space-

craft affects the accuracy of magnetic reconstruction. A key component of this would

be developing quantitative metrics for assessing reconstruction quality. A simple point

by point comparison cannot take into account the benign distortion and blurring which

arises because of reconstruction using a finite number of spacecraft. Instead, we are

focusing on physically relevant parameters of magnetic structures: e.g., the connectiv-

ity of magnetic fields and the aspect ratios and orientations of regions of weak/strong

magnetic field.
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Chapter 9

CONCLUSION

9.1 Broader Context

Space plasmas such as the solar wind and terrestrial magnetosheath are highly

structured and dynamic systems. Over the last few decades, two different theoretical

frameworks have been developed to study their formation and evolution. The first

uses linear Vlasov theory to explore micro-scale phenomena: the effects of waves and

the constraints imposed by microinstabilities on the plasmas. The second includes

the larger mesoscales and focuses on non-linear processes such as turbulence and the

coherent structures it generates.

Though both these frameworks have strong observational supports (see Sec-

tion 2.3), they are incompatible as traditionally formulated. Linear theory explicitly

assumes a homogeneous background for the linear fluctuations that it studies. In con-

trast, turbulence produces strong inhomogeneities at all scales — including those of

linear theory. Reconciling these incongruous theories has motivated the work of this

thesis.

We focused our work on ion temperature-anisotropy and heating. Many previous

studies have identified the heating of solar wind and magnetosheath to be ubiquitous

but strongly inhomogenous (see Section 3.2). The rate of heating varies across time and

space and is often highly anisotropic which leads to strong temperature-anisotropies

(T⊥/T‖ 6= 1). The observations and simulations strongly indicate that turbulence pro-

duces inhomogeneous and anisotropic heating (see Sections 5.4 and 6.5). Likewise, the

predicted constraints of linear Vlasov theory align well with the observed distribution of

ion temperature-anisotropy (see Section 2.3). Despite their contradictory assumptions,
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both turbulence and microinstabilities seem to substantially affect ion-temperature in

space plasmas. We conjectured that though turbulence produces inhomogeneities, the

plasma remains sufficiently homogeneous at the kinetic micro-scales for the fastest

modes of linear instability to develop.

9.2 Summary of Key Results

In Chapter 5 we reported our analysis on the interplay of temperature-anisotropy

driven linear microkinetic instabilities and intermittency arising as a consequence of

turbulence. We showed that the two processes occur in close physical space. We also

found the indication that the linear instabilities occur in discrete regions or intervals

in different kinds of simulations as well as in in-situ data from space plasmas (see

Figures 5.1 to 5.5).

In Chapter 6 we studied how intermittent structures affect the heating of the

nascent solar wind and the terrestrial magnetosheath.. We used PVI to quantify inter-

mittency. Study (Osman et al., 2012b) using the same technique at 1 au shows similar

result thereby suggesting the ubiquitous nature of PVI heating. While we observed

strong positive correlation between PVI and radial proton-temperature for the solar

wind, magnetosheath plasma show little correlation. As discussed in Section 6.5 some

of the reasons for poor correlation might be the lower average value of PVI in magne-

tosheath as compared to the solar wind, small duration of observations as well as the

relatively longer duration of the PVI events might be other contributing factors. In any

case, this remains poorly understood and rather surprising given the positive correla-

tion observed between PVI and the electron temperature (Chasapis et al., 2018). For

the solar wind, we also found elevated value of conditionally averaged radial tempera-

ture up to one correlation length away from the point of a PVI event (see Figure 6.5).

In Chapter 7 we compare the characteristic time scales of microinstabilities

to those of turbulence at the same size scales for 6 different datasets. We observed

that for the vast majority of data points/regions where the conditions were unstable,

turbulence time scale is shorter than linear time scale (see Figures 7.1 to 7.5). This
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means that linear instabilities rarely have enough time to grow and affect the plasma

before turbulence changes the plasma conditions driving the instability. However, since

anisotropy is well regulated by the instability thresholds, we looked at the relative

values of two time scales along the edges of Brazil plot. We found that along the edges

linear instabilities do become faster than their turbulence counterpart and thus are

able to regulate the extreme values of anisotropy (see Figures 7.6 to 7.7).

At present we cannot image full structure of the interplanetary magnetic field

using a few spacecraft. However, constellations with larger and larger number of space-

craft are becoming increasingly common with several possible missions to be launched

in near future. Thus with a view towards the future, we carried out a study in Chap-

ter 8 to reconstruct the 3-D topology and morphology of the interplanetary magnetic

field from observations made by such a constellation with finite number of spacecraft.

Using Gaussian Processes in machine learning for different configurations of number

and arrangement of spacecraft, we showed that we need a baseline of 24 spacecraft to

successfully carry out such a process. A complete 3-D image of the magnetic field will

significantly advance our understanding of turbulence in space plasmas and and shed

light on the exact process of turbulence cascade.
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Appendix A

BRAZIL PLOTS

In Section 2.3 we showed Brazil-plots from dataset wnd (Figure 2.4) and mms

(Figure 2.5). Here we show the Brazil-plot from rest of the datasets mentioned in

Chapter 4.

We observe that for 2.5-D simulations because of low values of Rp and β‖p, the

instability thresholds are not very well aligned with the distribution of the plasma.

However, the plasma in all cases are well confined. For the 3-D case where the prop-

agation vector is not restrained, we do observe a Brazil plot which is very similar to

that observed in space plasma data.
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Figure A.1: Plot of estimated probability density, p̃ of (Rp, β‖p) for 149p6 dataset and thresh-
olds associated with different instabilities for threshold value of γmax/Ωcp = 10−3.
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Figure A.2: Plot of estimated probability density, p̃ of (Rp, β‖p) for kaw dataset and thresholds
associated with different instabilities for threshold value of γmax/Ωcp = 10−3.



A-4

100

β‖p = 2µ0npkBT‖p/B
2

100

R
p

=
T
⊥

p
/T
‖p

γ/Ωcp = 10−2

cyclotron

parallel firehose

mirror

oblique firehose

10−3 10−2 10−1 100 101

Probability Density

Figure A.3: Plot of estimated probability density, p̃ of (Rp, β‖p) for combination of 149p6

and kaw dataset and thresholds associated with different instabilities for threshold value of
γmax/Ωcp = 10−3.
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Figure A.4: Plot of estimated probability density, p̃ of (Rp, β‖p) for ros dataset and thresholds
associated with different instabilities for threshold value of γmax/Ωcp = 10−1.
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Figure A.5: Plot of estimated probability density, p̃ of (Rp, β‖p) for psp dataset and thresholds
associated with different instabilities for threshold value of γmax/Ωcp = 10−1.
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Appendix B

CGL INVARIANTS

This appendix details the Chew–Goldberger–Low (CGL) invariants as men-

tioned in Section 3.2.1.

As mentioned in Section 3.2.1, for a slowly changing magnetic field (compared

to the ion gyrotropic time scale) we have conservation of magnetic moment (µ) of the

particle and thus we have:

dµ

dt
= 0 (B.1)

where, µ = mpw
2
⊥p/(2B), mp is the proton mass, w2

⊥p is the perpendicular thermal

velocity and B is the magnitude of magnetic field. Writing Equation (B.1) in terms of

proton-perpendicular temperature using Equation (2.16), we have:

d

dt

(
kBT⊥p

B

)
= 0 (B.2)

or:

T⊥p ∝ B (B.3)

For the parallel case, consider the equation for parallel pressure (p‖), for which

under similar assumptions one can write (Baumjohann & Treumann, 1996):

p⊥
dp‖
dt

+ 2 p‖
dp⊥
dt

+ 5 p⊥p‖∇ · v = 0 (B.4)

Substituting for ∇ · v from the continuity equation (Equation (B.5)),

∂n

∂t
+ v · ∇n+ n∇ · v = 0 (B.5)
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and the fact that d/dt = ∂/∂t+ v · ∇, we can rewrite Equation (B.4) as:

d

dt

(
p‖p2
⊥

n5

)
= 0 (B.6)

or:

d

dt

(
p‖B2

n3

)
= 0 (B.7)

which in terms of temperature can be written as:

T‖ ∝ (n/B)2 (B.8)

which is same as Equation (3.6).

Equations (B.2) and (B.7) are referred as the Chew–Goldberger–Low invariants.
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Appendix C

GAUSSIAN PROCESSES ALGORITHM

This appendix details the Gaussian Processes Regression followed in Section 8.4.

We start with the ros dataset. As discussed in Section 4.2.3 the dataset has a resolution

of 20483 cells with a box size of ∼ 42 di. Since the resolution of reconstructed image

is of the order of di, we decided to downsample the dataset using block reduce in

skimage. We lowered the resolution to 42 cells along x and y-directions, and 128 cells

along z-direction. In units of di, this gives us resolution of ∼ 0.3 di in z-direction and

1 di along the other two. The reason for different resolutions is the fact that along

xy-plane, the resolution is limited by the minimum separation between two spacecraft

(1 di), whereas along the z-direction it is the sampling rate of our instrument which

determines the resolution.

Here we list typical values of some of the parameters associated with the simu-

lation and solar wind at 1 au:

di(1 au) ∼ 100 km

Vsw ∼ 500 km/sec

Xsim(boxsize) ∼ 40 di

∼ 4× 103 km

dspc ∼ [1, 11] di

∼ [102, 103] km

fmin ∼ Vsw/(2× dspc,min)

∼ 2.5 Hz
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At the assumed solar wind speed of 500 km/s, it takes the spacecraft configuration

roughly 10 seconds to cross the whole box. And because of Nyquist criteria, we must

have a sampling rate faster than 2.5 Hz. Because of restrictions provided by Nyquist

frequency and the box size and because we wanted to have a sample at every plane

along the z-direction, we chose a sampling frequency of 40 Hz. This is easily achievable

for modern day magnetometers (Bale et al., 2016; Russell et al., 2016).

Once we have the sampling rate and the spacecraft configuration fixed, we vir-

tually fly through the simulation box and collect data for each spacecraft. At the end

of simulated flight we have nspc (number of spacecraft) number of data points for each

plane and thus 128× nspc total data points along with their positions. We then define

a kernel and associated variables as:

pln = ‘xy’

drn = ‘z’

ck len = 5

mat len scl = [2,2,6]

mat nu = 5/2

sigma 0 = 0

n restarts optimizer = 20

kernel = CK(ck len, (1e-2, 1e2)) + CK(ck len, (1e-2, 1e2)) *

Matern(length scale=mat len scl, nu=mat nu)

we then run the Gaussian Processes with the selected kernel:

gp = GaussianProcessRegressor(kernel=kernel,

n restarts optimizer=n restarts optimizer)

We can then get the model based on the data collected by the spacecraft:

gp.fit(X, y)

and then provide gp.fit with the coordinate of all the locations at which we want
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to find the value of the field:

y pred, mse pred = gp.predict(x1x2x3, return std=True)

and reshape the output get the final value of field at each point:

Zp = np.reshape(y pred,(indx max - indx min + 1,

indy max - indy min + 1, indz max - indz min + 1, 3))

MSE = np.reshape(mse pred,(indx max - indx min + 1,

indy max - indy min + 1, indz max - indz min + 1))

Zp is the output that we have plotted in Figures 8.2 to 8.9.
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